Subscribe to Events

Download as iCal file

Special Colloquium

Combinatorial atlas for log-concave inequalities

Swee Hong Chan, UCLA

Location:  Zoom
Date & time: Monday, 29 November 2021 at 1:30PM - 2:30PM

Abstract: The study of log-concave inequalities for combinatorial objects have seen much progress in recent years. One such progress is the solution to the strongest form of Mason's conjecture (independently by Anari et. al. and Brándën-Huh). In the case of graphs, this says that the sequence \(f_k\) of the number of forests with \(k\) edges, form an ultra log-concave sequence. In this talk, we discuss an improved version of all these results, proved by using a new tool called the combinatorial atlas method. This is a joint work with Igor Pak. This talk is aimed at a general audience.

This talk is for the local Rutgers Math Community only. Zoom links will be sent by the Department Chair via email.