Seminars & Colloquia Calendar

Download as iCal file

Special Colloquium

Fokker-Planck Equations and Machine Learning

Yuhua Zhu, Stanford University

Location:  Zoom
Date & time: Wednesday, 15 December 2021 at 11:30AM - 12:30PM

Abstract: As the continuous limit of many discretized algorithms, PDEs can provide a qualitative description of algorithm's behavior and give principled theoretical insight into many mysteries in machine learning. In this talk, I will give a theoretical interpretation of several machine learning algorithms using Fokker-Planck (FP) equations. In the first one, we provide a mathematically rigorous explanation of why resampling outperforms reweighting in correcting biased data when stochastic gradient-type algorithms are used in training. In the second one, we propose a new method to alleviate the double sampling problem in model-free reinforcement learning, where the FP equation is used to do error analysis for the algorithm. In the last one, inspired by an interactive particle system whose mean-field limit is a non-linear FP equation, we develop an efficient gradient-free method that finds the global minimum exponentially fast. 

Special Note to All Travelers

Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.

Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.