Seminars & Colloquia Calendar
The Heights theorem for integrable quadratic differentials on infinite Riemann surfaces
Dragomir Saric (CUNY)
Location: zoom link: https://rutgers.zoom.us/j/96839448491?pwd=NHNWcVFKTWpkRDZWcVVhVm9mYTNGUT09
Date & time: Tuesday, 22 September 2020 at 3:50PM - 4:50PM
An integrable holomorphic quadratic differential on a Riemann surface induces a measured foliation of the surface by horizontal trajectories. A quadratic differential associates to each homotopy class of a closed curve its height, i.e.-the infimum of the transverse measure over the homotopy class. Marden and Strebel proved that the space of quadratic differentials is in a one to one correspondence to the heights maps when the Riemann surface is of parabolic type.
We extends the validity of the Heights Theorem to all surfaces whose fundamental group is of the first kind. In fact, we establish a more general result: the {\it horizontal} map which assigns to each integrable holomorphic quadratic differential a measured lamination obtained by straightening the horizontal trajectories of the quadratic differential is injective for an arbitrary Riemann surface with a conformal hyperbolic metric.
When a hyperbolic surface has a bounded geodesic pants decomposition, the horizontal map assigns a bounded measured lamination to each integrable holomorphic quadratic differential. When surface has a sequence of closed geodesics whose lengths go to zero, then there exists an integrable holomorphic quadratic differential whose horizontal measured lamination is not bounded. We also give a sufficient condition for the non-integrable holomorphic quadratic differential to give rise to bounded measured laminations.
R. Shapiro Organizer's Page
Chiara Damiolini, Ian Coley and Franco Rota -Charles Weibel Organizer's Page
Narek Hovsepyan and Ewerton Rocha Vieira Organizer's page
Ziming Shi, Sagun Chanillo, Xiaojun Huang, Chi Li, Jian Song Seminar website Old seminar website
Sepehr Assadi Seminar webpage
Jeffry Kahn, Bhargav Narayanan, Jinyoung Park Organizer's webpage
Robert Dougherty-Bliss and Doron Zeilberger --> homepage
Paul Feehan, Daniel Ketover, Natasa Sesum Organizer's webpage
Lev Borisov, Emanuel Diaconescu, Angela Gibney, Nicolas Tarasca, and Chris Woodward Organizer's webpage
Hong Chen Seminar webpage
Fanxin Wu and Nkhalo Malawo Organizer's website
James Holland; Organizer website
Organizers: Maxime Van de Moortel and Avy Soffer. Organizer's Page
Yanyan Li, Zheng-Chao Han, Jian Song, Natasa Sesum Organizer's Webpage
Organizer: Luochen Zhao
Yanyan Li, Zheng-Chao Han, Natasa Sesum, Jian Song Organizer's Page
Lisa Carbone, Yi-Zhi Huang, James Lepowsky, Siddhartha Sahi Organizer's webpage
Simon Thomas website
Kasper Larsen, Daniel Ocone and Kim Weston Organizer's page
Joel Lebowitz, Michael Kiessling
Yanyan Li, Dennis Kriventsov Organizer's Webpage
Alex V. Kontorovich, Vlada Sedláček seminar website
Stephen D. Miller
Organizers: Yanyan Li, Z.C. Han, Jian Song, Natasa Sesum
Kristen Hendricks, Xiaochun Rong, Hongbin Sun, Chenxi Wu Organizer's page
Fioralba Cakoni Seminar webpage
Organizer's webpage: Organizer's webpage
For information on the Statistical Mechanics Conference, visit HERE
- Show events from all categories
Special Note to All Travelers
Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.
Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.