Seminars & Colloquia Calendar
David Nelson - The Statistical Mechanics of Mutilated Sheets and Shells
David Nelson
Location: Webinar
Date & time: Thursday, 16 July 2020 at 11:00AM - 12:00PM
__________________________________________
MATHEMATICAL PHYSICS WEBINAR
RUTGERS UNIVERSITY
__________________________________________
In order to receive the email from “RU Math-Phys Seminar” to access the seminar, you must first set up an account in Sakai. If you would like to attend these seminars and have not received an email to set up an account in Sakai please let me know .
___________________________________________________
David Nelson – Harvard University
Thursday, July 16, 11:00AM
Title
"The Statistical Mechanics of Mutilated Sheets and Shells”
Understanding deformations of macroscopic thin plates and shells has a long and rich history, culminating with the Foeppl-von Karman equations in 1904, a precursor of general relativity characterized by a dimensionless coupling constant (the "Foeppl-von Karman number") that can easily reach vK = 10^7 in an ordinary sheet of writing paper. However, thermal fluctuations in thin elastic membranes fundamentally alter the long wavelength physics, as exemplified by experiments that twist and bend individual atomically-thin free-standing graphene sheets (with vK = 10^13!) We will discuss recent results for the bending and pulling of thermalized graphene ribbons, and then move on to analyze thin amorphous spherical shells with a uniform nonzero curvature, accessible for example with soft matter experiments on diblock copolymers. This curvature couples the in-plane stretching modes with the out-of-plane undulation modes, giving rise to qualitative differences in the fluctuations of thermal spherical shells (and hollow cylinders) compared to flat membranes. These expectations are confirmed by extensive molecular dynamics simulations, suggesting that, using free-standing graphene sheets, it may be possible to study the quantum mechanics of two dimensional Dirac massless fermions in a fluctuating curved space whose dynamics resembles a simplified form of general relativity.
Chiara Damiolini, Ian Coley and Franco Rota -Charles Weibel Organizer's Page
Narek Hovsepyan and Ewerton Rocha Vieira Organizer's page
Ziming Shi, Sagun Chanillo, Xiaojun Huang, Chi Li, Jian Song Seminar website Old seminar website
Sepehr Assadi Seminar webpage
Jeffry Kahn, Bhargav Narayanan, Jinyoung Park Organizer's webpage
Robert Dougherty-Bliss and Doron Zeilberger --> homepage
Paul Feehan, Daniel Ketover, Natasa Sesum Organizer's webpage
Lev Borisov, Emanuel Diaconescu, Angela Gibney, Nicolas Tarasca, and Chris Woodward Organizer's webpage
Hong Chen Seminar webpage
Fanxin Wu and Nkhalo Malawo Organizer's website
James Holland; Organizer website
Organizers: Maxime Van de Moortel and Avy Soffer. Organizer's Page
Yanyan Li, Zheng-Chao Han, Jian Song, Natasa Sesum Organizer's Webpage
Organizer: Luochen Zhao
Yanyan Li, Zheng-Chao Han, Natasa Sesum, Jian Song Organizer's Page
Lisa Carbone, Yi-Zhi Huang, James Lepowsky, Siddhartha Sahi Organizer's webpage
Simon Thomas website
Kasper Larsen, Daniel Ocone and Kim Weston Organizer's page
Joel Lebowitz, Michael Kiessling
Yanyan Li, Dennis Kriventsov Organizer's Webpage
Alex V. Kontorovich, Vlada Sedláček seminar website
Stephen D. Miller
Organizers: Yanyan Li, Z.C. Han, Jian Song, Natasa Sesum
Kristen Hendricks, Xiaochun Rong, Hongbin Sun, Chenxi Wu Organizer's page
Fioralba Cakoni Seminar webpage
- Show events from all categories
Special Note to All Travelers
Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.
Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.