Seminars & Colloquia Calendar
Regularity of interfaces in phase transition via obstacle problems
Alessio Figalli (ETH)
Location: Hill 705
Date & time: Friday, 16 February 2018 at 4:00PM - 5:00PM
Abstract: The so-called Stefan problem describes the temperature distribution in a homogeneous medium undergoing a phase change, for example ice passing to water, and one aims to describe the regularity of the interface separating the two phases. In its stationary version, the Stefan problem can be reduced to the classical obstacle problem, which consists in finding the equilibrium position of an elastic membrane whose boundary is held fixed, and that is constrained to lie above a given obstacle. The aim of this talk is to give a general overview of the classical theory of the obstacle problem, and then discuss some very recent developments on the optimal regularity of the free boundary both in the static and the parabolic setting.
Organizer's webpage: Organizer's webpage
- Show events from all categories
Special Note to All Travelers
Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.
Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.