Seminars & Colloquia Calendar

Download as iCal file

DIMACS Theory of Computing Seminar

Equivocating Yao: Constant-Rounds Adaptively Secure Multiparty Computation in the Plain Model

Muthuramakrishnan Venkitasubramaniam: University of Rochester

Location:  CoRE 301
Date & time: Wednesday, 15 February 2017 at 11:00AM - 11:11AM

Yao’s circuit garbling scheme is one of the basic building blocks of cryptographic protocol design. Originally designed to enable two-message, two-party secure computation, the scheme has been extended in many ways and has innumerable applications. Still, a basic question has remained open throughout the years: Can the scheme be extended to guarantee security in the face of an adversary that corrupts both parties, adaptively, as the computation proceeds?

We provide a positive answer to this question. We define a new type of encryption, called functionally equivocal encryption (FEE), and show that when Yao’s scheme is implemented with an FEE as the underlying encryption mechanism, it becomes secure against such adaptive adversaries. We then show how to implement FEE from any one way function.

Combining our scheme with non-committing encryption, we obtain the first two-message, two-party computation protocol, and the first constant-rounds multiparty computation protocol, in the plain model, that are secure against semi-honest adversaries who can adaptively corrupt all parties. We also provide extensions to the multiparty setting (with UC-security) and applications to leakage resilience.

Special Note to All Travelers

Directions: map and driving directions. If you need information on public transportation, you may want to check the New Jersey Transit page.

Unfortunately, cancellations do occur from time to time. Feel free to call our department: 848-445-6969 before embarking on your journey. Thank you.