Major Topic: Finite-Dimensional Lie Algebras

- **Elementary notions and basic theory**
 - Definitions, examples, representations, modules
 - Solvable, nilpotent, simple, semisimple Lie algebras and the Killing form
 - Engel’s Theorem and Lie’s Theorem
 - Cartan’s criteria for semisimplicity and solvability
 - Semisimple Lie algebras as direct products of simple Lie algebras
 - Weyl’s Theorem for complete reducibility of modules for semisimple Lie algebras

- **Semisimple Lie algebras**
 - Representations of $\mathfrak{sl}(2, \mathbb{C})$
 - Root systems and axiomatics
 - Simple roots and the Weyl group
 - Classification of root systems

- **Representation theory**
 - Universal enveloping algebras
 - Poincaré-Birkhoff-Witt Theorem
 - Serre’s theorem
 - Construction of all finite-dimensional modules for semisimple Lie algebras
MINOR TOPIC: VERTEX OPERATOR ALGEBRAS

• Definitions and properties
 – Formal calculus
 – Axiomatic definitions and basic properties of vertex (operator) algebras
 – Axiomatic definitions and basic properties of modules for vertex (operator) algebras
 – Analytic definitions of vertex operator algebras and modules (as in [2])
 – Equivalence of Jacobi identity with commutativity and associativity

• Examples of vertex operator algebras
 – Huang’s analytic construction theorem for grading-restricted vertex algebras
 – Vertex operator algebras associated to the Virasoro algebra (construction using [2], results as in [1], Section 6.1)
 – Vertex operator algebras associated to affine Lie algebras (construction using [2], results as in [4], Section 6.2)
 – Vertex operator algebras and modules associated to lattices (as in [1])

References

