ORAL QUALIFYING EXAM SYLLABUS

YUCHEN WEI

• Major Topic: Symmetric Functions
 (1) The ring of symmetric functions Λ.
 • Elementary symmetric functions e_r.
 • Complete symmetric functions h_r.
 • Power sums p_r.
 How to prove
 \[\Lambda = \mathbb{C}[e_0, e_1, e_2, \ldots] = \mathbb{C}[h_0, h_1, h_2, \ldots] = \mathbb{C}[p_0, p_1, p_2, \ldots] \]
 How to express e_r, h_r, p_r in terms of each other.
 (2) Partitions and semistandard tableaux, Robinson-Schensted-Knuth bijection, row and column insertions, plactic monoid, connection with increasing subsequences.
 (3) Schur functions S_λ. Equivalent definitions
 \[\sum_T x^T \]
 \[\det (x^{\lambda} + n - j) / \prod_{1 \leq i < j \leq n} (x_i - x_j) \]
 (4) Complex representations of S_n.
 (5) Schur functions from the representation theory of S_n and of $GL_n(\mathbb{C})$, Schur-Weyl duality.
 (6) Cauchy identity, Pieri formulas, Jacobi-Trudi formulas, Hook length formula, Weyl dimension formula.
 (7) The Littlewood-Richardson rule, skew Schur functions.
 (8) Hall-Littlewood symmetric functions, connections to representation theory of GL_n over a finite field and Hecke rings.
 (9) Macdonald symmetric functions. Operators D'_n. Connections to double affine Hecke algebras.
 (10) The (q, t)-Kostka coefficients $K_{\lambda\mu}(q, t) \in \mathbb{Z}[q, t]$ is a polynomial in q and t with integral coefficients.

• Minor Topic: Lie Algebras
 (1) Basic theory of Lie algebras.
 • Definitions, representations, modules
 • Solvable, nilpotent, semisimple Lie algebras
 • Engel’s theorem
 (2) Semisimple Lie algebras.
 • Lie’s theorem and Cartan’s criterion
• Killing form
• Weyl’s theorem

(3) Root systems.
 • Definition of root systems
 • Simple roots and the Weyl group
 • Classification of root systems

(4) Existence Theorem.
 • Universal enveloping algebras
 • Poincaré-Birkhoff-Witt theorem
 • Serre’s theorem

REFERENCES

