Oral Qualifying Exam Syllabus

Date: April 8, 2021
Committee: Alex Kontorovich (chair), Henryk Iwaniec, Stephen Miller, Jerrold Tunnell

1. Automorphic Forms
 (a) The Modular Group
 i. $\text{SL}(2, \mathbb{Z})$ and Congruence Subgroups
 ii. Fundamental Domains for $\text{SL}(2, \mathbb{Z})$ and congruence subgroups
 iii. Cusps and Elliptic Points
 iv. The invariant measure of \mathcal{H} under $\text{SL}(2, \mathbb{Z})$
 (b) Modular Forms
 i. Modular and cusp forms
 ii. Fourier expansions
 iii. The dimensions of $M_k(\Gamma(1))$ and $S_k(\Gamma(1))$
 iv. Eisenstein Series, the Dedekind η function, Δ, and the Jacobi triple product formula
 v. The Petersson inner product on $S_k(\Gamma(1))$
 vi. The L-functions for modular forms and functional equations
 (c) Hecke Operators
 i. The slash and Hecke operators on holomorphic functions
 ii. Coset representatives for $\text{SL}(2, \mathbb{Z}) \setminus M_n(\mathbb{Z})$
 iii. Commutativity and self-adjointness of the Hecke operators
 iv. Hecke eigenforms and Fourier coefficients
 v. Euler products for Hecke eigenforms
 (d) The Rankin-Selberg Method
 i. The nonholomorphic Eisenstein series
 ii. Analytic continuations and Euler products for the convolution of two modular forms

2. Analytic Number Theory
 (a) Poisson Summation
 (b) The Mellin transform and the Γ function
 (c) The Riemann ζ function and Dirichlet L-functions
 i. Euler Products
 ii. θ functions
 iii. Analytic continuation and functional equations
 (d) The Prime Number Theorem

3. Homogenous Dynamics in the Hyperbolic Plane
 (a) Geodesic Flow
 (b) Horocycle Flow
 (c) Continued Fractions
 (d) Gauss Maps / Measure