Qualifying Exam Syllabus

Tamar Lichter

Quadratic Forms over Fields of Characteristic ≠ 2 (Major Topic)

• Foundations
 – Definitions
 – Hyperbolic spaces
 – Witt decomposition theorem and Witt cancellation theorem
 – Chain equivalence
 – Generation of the orthogonal group by reflections

• Witt rings
 – Definition of $\hat{W}(F)$ and $W(F)$
 – Group of square classes
 – Examples of Witt rings

• Quaternion algebras and their norm forms
 – Quaternion algebras as quadratic spaces
 – Coverings of the orthogonal groups
 – Linkage of quaternion algebras and Albert’s theorem

• The Brauer-Wall group
 – Central simple algebras (CSA) and the Brauer group
 – Central simple graded algebras (CSGA)
 – Structure theory of CSGA
 – The Brauer-Wall group

• Local fields and global fields
 – Springer’s theorem for complete discretely valued (c.d.v.) fields
 – Quadratic forms over local fields
 – Hasse-Minkowski principle
 – Witt ring of \mathbb{Q}
 – Hilbert reciprocity and quadratic reciprocity
Lie Algebras (Minor Topic)

- Foundations
 - Definitions, examples, representations, and modules
 - Solvable, nilpotent, simple, and semisimple Lie algebras, and the Killing form
 - Engel’s Theorem and Lie’s Theorem
 - Cartan’s criteria for semisimplicity and solvability
 - Semisimple Lie algebras as direct products of simple Lie algebras
 - Weyl’s Theorem for complete reducibility of modules for semisimple Lie algebras

- Semisimple Lie algebras
 - Representations of $\mathfrak{sl}(2, \mathbb{C})$
 - Root systems and axiomatics
 - Simple roots and the Weyl group
 - Classification of root systems

- Representation theory
 - Universal enveloping algebras
 - Poincaré-Birkhoff-Witt Theorem
 - Serre’s theorem
 - Construction of all finite-dimensional modules for semisimple Lie algebras

References

