Qualifying Exam Syllabus

Tamar Lichter

Quadratic Forms over Fields of Characteristic $\neq 2$ (Major Topic)

- Foundations
- Definitions
- Hyperbolic spaces
- Witt decomposition theorem and Witt cancellation theorem
- Chain equivalence
- Generation of the orthogonal group by reflections
- Witt rings
- Definition of $\widehat{W}(F)$ and $W(F)$
- Group of square classes
- Examples of Witt rings
- Quaternion algebras and their norm forms
- Quaternion algebras as quadratic spaces
- Coverings of the orthogonal groups
- Linkage of quaternion algebras and Albert's theorem
- The Brauer-Wall group
- Central simple algebras (CSA) and the Brauer group
- Central simple graded algebras (CSGA)
- Structure theory of CSGA
- The Brauer-Wall group
- Local fields and global fields
- Springer's theorem for complete discretely valued (c.d.v.) fields
- Quadratic forms over local fields
- Hasse-Minkowski principle
- Witt ring of \mathbb{Q}
- Hilbert reciprocity and quadratic reciprocity

Lie Algebras (Minor Topic)

- Foundations
- Definitions, examples, representations, and modules
- Solvable, nilpotent, simple, and semisimple Lie algebras, and the Killing form
- Engel's Theorem and Lie's Theorem
- Cartan's criteria for semisimplicity and solvability
- Semisimple Lie algebras as direct products of simple Lie algebras
- Weyl's Theorem for complete reducibility of modules for semisimple Lie algebras
- Semisimple Lie algebras
- Representations of $\mathfrak{s l}(2, \mathbb{C})$
- Root systems and axiomatics
- Simple roots and the Weyl group
- Classification of root systems
- Representation theory
- Universal enveloping algebras
- Poincaré-Birkhoff-Witt Theorem
- Serre's theorem
- Construction of all finite-dimensional modules for semisimple Lie algebras

References

1. R. Carter, Lie Algebras of Finite and Affine Type, Cambridge University Press, Cambridge, 2005.
2. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.
3. T. Y. Lam, Introduction to Quadratic Forms over Fields. American Mathematical Society, Providence, 2005.
