Qualifying Exam Syllabus

Tamar Lichter

Quadratic Forms over Fields of Characteristic $\neq 2$ (Major Topic)

- Foundations
 - Definitions
 - Hyperbolic spaces
 - Witt decomposition theorem and Witt cancellation theorem
 - Chain equivalence
 - Generation of the orthogonal group by reflections
- Witt rings
 - Definition of $\widehat{W}(F)$ and W(F)
 - Group of square classes
 - Examples of Witt rings
- Quaternion algebras and their norm forms
 - Quaternion algebras as quadratic spaces
 - Coverings of the orthogonal groups
 - Linkage of quaternion algebras and Albert's theorem
- The Brauer-Wall group
 - Central simple algebras (CSA) and the Brauer group
 - Central simple graded algebras (CSGA)
 - Structure theory of CSGA
 - The Brauer-Wall group
- Local fields and global fields
 - Springer's theorem for complete discretely valued (c.d.v.) fields
 - Quadratic forms over local fields
 - Hasse-Minkowski principle
 - Witt ring of ${\mathbb Q}$
 - Hilbert reciprocity and quadratic reciprocity

Lie Algebras (Minor Topic)

- Foundations
 - Definitions, examples, representations, and modules
 - Solvable, nilpotent, simple, and semisimple Lie algebras, and the Killing form
 - Engel's Theorem and Lie's Theorem
 - Cartan's criteria for semisimplicity and solvability
 - Semisimple Lie algebras as direct products of simple Lie algebras
 - Weyl's Theorem for complete reducibility of modules for semisimple Lie algebras
- Semisimple Lie algebras
 - Representations of $\mathfrak{sl}(2,\mathbb{C})$
 - Root systems and axiomatics
 - Simple roots and the Weyl group
 - Classification of root systems
- Representation theory
 - Universal enveloping algebras
 - Poincaré-Birkhoff-Witt Theorem
 - Serre's theorem
 - Construction of all finite-dimensional modules for semisimple Lie algebras

References

- 1. R. Carter, *Lie Algebras of Finite and Affine Type*, Cambridge University Press, Cambridge, 2005.
- J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.
- 3. T. Y. Lam, *Introduction to Quadratic Forms over Fields*. American Mathematical Society, Providence, 2005.