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Abstract

We prove a Kazdan–Warner type identity involving the σk curvature and a conformal Killing vector field on a compact manifold.

Our method also works to provide a unified proof for the necessary conditions in the Christoffel–Minkowski problem. To cite this

article: Z.-C. Han, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une identité de type Kazdan–Warner pour la σk-courbure. Nous prouvons une identité de type Kazdan–Warner reliant la

σk-courbure et un champ de vecteurs conforme sur une variété compacte. Notre méthode permet aussi de fournir une preuve unifiée

pour les conditions nécessaires dans le problème de Christoffel–Minkowski. Pour citer cet article : Z.-C. Han, C. R. Acad. Sci.

Paris, Ser. I 342 (2006).

 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and statement of results

The Schouten tensor Ag of a metric g is defined to be

Ag =
1

n − 2

{

Ricg −
Scalg

2(n − 1)
g

}

.

The σk curvature of g is defined to be the kth elementary symmetric function of the eigenvalues of the 1-1 tensor

g−1 ◦ Ag . σ1 of g is simply a dimensional constant multiple of the scalar curvature of g. Since the first systematic

study of the σk curvature in the thesis of Viaclovsky [19] there has been very intensive research and progress on an

extensive list of geometrical and PDE problems involving the σk curvature of a metric for k > 1, mostly involving
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a conformal change of metric—more than 40 publications have appeared in the last few years, one can begin with

[4,8,9,15] for recent work in this area and further references. Since the Schouten tensor transforms as

Ag = Ag0 −

[

∇2w − dw ⊗ dw +
1

2
|∇w|2g0

]

,

under a conformal change of metric g = e2w(x)g0, the σk curvature of g, when k � 2, is then expressed as a fully non-

linear expression involving w and its derivatives up to order 2. Almost all analytical work involving the σk curvature

restricts attention to the so called admissible metrics, for which the σk curvature, regarded as a differential operator

on w is, elliptic. For this reason, it is natural to consider σ
1/k

k , not σk , to be the analytical object of study, as σ
1/k

k ,

regarded as a differential operator on w, is concave on the second derivatives of w, and the concavity property is

crucial for applying the Evans–Krylov regularity theory. Also for this reason in the PDE analysis of solvability results

involving the σk curvature one is often led to imposing conditions on σ
1/k

k . However, as this note indicates, global

geometric obstruction conditions are naturally in terms of σk , not σ
1/k

k .

For k = 1, Kazdan and Warner [11,12] first noticed a global geometric obstruction for a function K(x) on the round

sphere S
n to be the scalar curvature of a conformal metric g, expressed as

∫

Sn

〈∇xj ,∇K〉dvolg = 0, for j = 1, . . . , n + 1,

where xj are the coordinate functions on S
n from the standard embedding. Later these obstructions were extended to

manifolds involving a general conformal Killing vector field by Bourguignon [1], Bourguignon and Ezin [2]—note

that ∇xj generates conformal Killing vector fields on S
n. Schoen also derived local versions [18,13] and used them in

the construction and a priori estimates for metrics of constant scalar curvature. Here we obtain a natural generalization

of these obstructions for the σk curvatures.

Theorem 1. Let (Mn, g) be a compact Riemannian manifold of dimension n � 3, σk(g
−1 ◦ Ag) be the σk curva-

tures of g, and X be a conformal Killing vector field on (Mn, g). When k > 2, also assume that (Mn, g) is locally

conformally flat. Then
∫

M

〈

X,∇σk

(

g−1 ◦ Ag

)〉

d volg = 0. (1)

These obstructions can be obtained by a variational means, as was done in [10,5,6], and play important roles in

proving a priori estimates for metrics in terms of their σk curvatures. The method in [1] uses the construction of

a closed 1-form on the infinite dimensional manifold consisting of metrics conformal to (Mn, g), invariant under

the action of conformal diffeomorphisms of (Mn, g). In [1] Bourguignon also sketches a way to obtain generalized

integral identities involving the higher degree Pfaffian polynomials of the curvature of g. That method in fact can

also be adapted to prove (1) using the information in [3,5,19]. However, both proofs in [1] and [2] need to appeal to

the Lelong–Ferrand–Obata theorem [14,16]. A more direct and elementary proof for (1), which also produces local

balancing identities useful for proving a priori bounds, is with tensor calculus using the following elementary algebraic

and analytic properties of the σk curvature—this proof can be thought of as adaptions of the arguments in [2] and [18].

Proposition 2. [17,19] Define Tk(Λ) =
∑k

j=0(−1)jσk−j (Λ)Λj . Then we have

(i) (k + 1)σk+1(Λ) = Tk(Λ)abΛ
b
a .

(ii) ∇cAab = ∇bAac , if g is locally conformally flat.

(iii) ∇aTk(g
−1 ◦ Ag)

a
b = 0, if either k = 1 or g is locally conformally flat.

Remark 3. The conclusion in (iii) follows from that in (ii) as in [17]. From the proof below, the following is evi-

dent: for any symmetric (0,2) tensor A satisfying the conclusion in (ii), (1) would hold for k < n. This unifies the

proof for the necessary conditions in the Christoffel–Minkowski problem [7] with the case here for the σk curvatures

when k < n. A peculiar feature is that the case k = n needs be handled separately, while known properties of the σk

curvatures, e.g. see (3) below, and the proof in [2] suggest that 2k = n may need to be handled separately.
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2. Proof of Theorem 1

Our proof is based on the following properties

n − k

n
∇aσk = ∇b

◦

H b
a , (2)

(n − 2k)〈X,∇σk〉 = −∇a

[

T a
b ∇b(divX) + 2kσkX

a
]

, (3)

where
◦

H b
a = H b

a −
H c

c

n
δb
a , H b

a = T b
c Ac

a , and T a
b denote the components of Tk−1.

Assuming (2) and (3), we can conclude our proof of Theorem 1 as follows. Based on (2), we have, for any conformal

Killing vector field Xa ,

n − k

n
〈X,σk〉 = ∇b

(

Xa
◦

H b
a

)

− ∇bX
a

◦

H b
a = ∇b

(

Xa
◦

H b
a

)

, (4)

where we have used ∇bX
a + ∇aX

b = 2 divX
n

δb
a ,

◦

H a
a = 0, and

◦

Hac := gbc

◦

H b
a is symmetric in a and c. Theorem 1

follows from integrating (4) over M when k �= n, or integrating (3) over M when k = n.

Proof of (2). When (ii) in Proposition 2 holds, (iii) also holds, and we have

∇aσk = T b
c ∇aA

c
b = T b

c ∇bA
c
a = ∇b

[

T b
c Ac

a

]

= ∇bH
b
a .

This also holds for k = 1 without knowing (ii) by Bianchi identities. Then using H a
a = kσk , which follows from (i) of

Proposition 2, we conclude

∇b

◦

H b
a = ∇bH

b
a −

k

n
∇aσk =

n − k

n
∇aσk.

Proof of (3). Let φt denote the local one-parameter family of conformal diffeomorphisms of (M,g) generated

by X. Thus for some function wt we have φ∗
t (g) = e2wt g =: gt . We have the following properties:

σk

(

g−1 ◦ Ag

)

◦ φt = σk

(

g−1
t ◦ Agt

)

, (5)

ẇ :=
d

dt

∣

∣

∣

∣

t=0

wt = divX/n = ∇aX
a/n, (6)

d

dt

∣

∣

∣

∣

t=0

(

g−1
t ◦ Agt

)a

b
= −∇a

b ẇ − 2ẇAa
b . (7)

Using (5)–(7) and Proposition 2, we conclude (3) by

〈X,∇σk〉 = T b
a

[

−∇a
b ẇ − 2ẇAa

b

]

= −T b
a ∇a

b ẇ − 2kσkẇ

= −T b
a ∇a

b ẇ −
2k

n
σk∇bX

b

= −T b
a ∇a

b ẇ +
2k

n
〈X,∇σk〉 −

2k

n
∇b

(

σkX
b
)

= −∇b

[

T b
a ∇aẇ +

2k

n
σkX

b

]

+
2k

n
〈X,∇σk〉. (8)

Remark 4. (2) and (4) depend only on (ii), while (3) depends also on the conformal transformation laws for A. For

the Christoffel–Minkowski problem, one looks for a convex hypersurface whose kth Weingarten curvature (the kth

elementary symmetric function of the principal curvatures) at its point with normal vector ν is Wk(ν). Let u(ν) denote

the support function of the surface, then W−1
k (ν) = σk(uab(ν) + u(ν)δab), and Aab := uab(ν) + u(ν)δab satisfy the

conclusion in (ii). Thus it follows from (4) that
∫

Sn

νi

Wk(ν)
dvolSn(ν) =

∫

Sn

νiσk

(

uab(ν) + u(ν)δab

)

dvolSn(ν) = −
1

n

∫

Sn

〈∇νi,∇σk〉dvolSn(ν) = 0,

for k < n. The case k = n follows from a direct integration by parts using σk(uab(ν) + u(ν)δab) = Tab(uab(ν) +

u(ν)δab), Tab,b = 0, and ∇abνi = −νiδab .
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