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Lecture 1

1 Notation and terminology

1.1 Groups and their modules:

Definition 1. Let G be a goup. A G-module A is an additive group with a
G-action.

A G-module clearly defines a ZG-module structure on A, and a ZG-module
structure on A clearly defines a G-module structure on A. The distinction will
be blurred in this regard, and one often just says that A is a G-module.

The free G-modules are up to isomorphism ⊕ZG with basis X.
For an arbitrary G-module A, there exists a free G-module F and a surjective

map ϵ : F � A, such that G ∼= F/ ker ϵ. This will be called a free presentation of
the G-module A.

1.2 Group actions on metric spaces:

Let (M, d) denote a metric space M with metric d.

Definition 2. A group G acts on the metric space (M, d) if G acts by isometries.
That is, there is a map ρ : G → Isom (M). We will often adopt the notation for
g ∈ G, m ∈ M , gm = ρ (g)m = ρg (m).

Important examples for our consideration are En and H2.

Example 1. We recall that Isom (En) = Transl (En) o O (n) where we identify
Transl (En) = Rn and the action of O (n) on Transl (En) is induced via matrix
multiplication on Rn. That is, (a, A) ∗ (b,B) = (a + Ab,AB).

However, for what follows we will be interested mainly in group actions ρ :
G → Transl (En). In this case, we see that G′ ⊆ ker ρ, hence we have the in-
duced homomorphism ρ̄ : Gab = G/G′ → Transl (En). If we consider

√
G′ :={

g ∈ G | ∃k ∈ N, gk ∈ G′}, we note that
√

G′ ⊆ ker ρ since Transl (En) is torsion
free. Thus we have the induced homomorphism ¯̄ρ : G/

√
G′ → Transl (En). Note

that G/
√

G′ is torsion free and Abelian. Thus if we are concerned with finitely
generated groups G, it suffices those group actions where Q = G/ ker ρ ∼= Zk.
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For Q = Zn, there is a canonical action of Q on En, namely, left translation on
the identification Q ⊗Z R ∼= Rn, i.e. g · (g′ ⊗ r) := (gg′) ⊗ r. This action satisfies
the following two helpful properties:

1. The orbit of the origin 0 ∈ Rn under this action is the standard lattice Zk

which inherits the discrete topology.

2. Let W be the closed cube of unity in Rn. Then the orbit of W under the
induced action covers Rn. Such an action is called co-compact.

Not all actions satisfy these two conditions as we now demonstrate.

Example 2. Let ρ : Zn → Transl (En) be the canonical action. Define ρ′ : Zn →
Transl (E ⊕ En) by g (x1, ..., xn+1) = (x1, x2 + g1, ..., xn+1 + gn). This action is
not co-compact, but condition one is satisfied in the sense that the orbit of 0 is
discrete.

Example 3. Define ρ : Z2 → Transl (E) via gr = r + g1 +
√

2g2. This is easily
seen to be an action which is co-compact, and one can verify that the orbit of 0
is indeed dense in R.

1.3 Boundary of (M,d) and horoballs:

In this paper, we make the convention that (M, d) is always a CAT(0) space.
We provide the basic definitions and important properties of CAT(0) spaces, and
refer the reader to the book by Bridson & Haefliger for a more precise treatment.

1.3.1 CAT(0) Spaces

Definition 3. Let ∆ = (γ1, γ2, γ3) be a geodesic triangle in (M, d) with corre-
sponding endpoints ai, where the γi are the geodesic edges. Consider a compar-
ison triangle ∆′ = (γ′

1, γ
′
2, γ

′
3) ⊆ E2 with corresponding endpoints a′

i such that
d (ai, aj) = d

(
a′

i, a
′
j

)
for all i, j ∈ {1, 2, 3}. The metric space (M,d) is then said

to be of type CAT(0) if d (γi (t) , γj (s)) ≤ d
(
γ′

i (t) , γ′
j (s)

)
. for all choices of i, j

and all t ∈ [0, d (ai, ai+1 mod 3)] and s ∈ [0, d (aj , aj+1 mod 3)].

One can generalize the definition of CAT(0) to CAT(k) by simply replacing
the comparison space E2 with the model surface M2

k of constant curvature k.
Then a metric space (M, d) is CAT(k) if triangles in M are not fatter than those
in M2

k .
In particular, the Euclidean and hyperbolic spaces are CAT(0) and we will

soon drop the generality and concentrate on the Euclidean case.

1.3.2 Horoballs

Definition 4. A geodesic ray is an isometric embedding of the metric space
[0,∞), γ : [0,∞) ↩→ M .

We now define an equivalence relation on the geodesic rays of a metric space
which generalizes the notion of parallel rays in En.

Definition 5. Two geodesic rays γ1, γ2 are parallel (or γ1 ∼ γ2) if and only if
d (γ1 (t) , γ2 (t)) is bounded.
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Definition 6. We now define ∂M := {γ | γ a geodesic ray} / ∼.

One can also define a topology on ∂M , (which I will hopefully explain shortly).
With this, we have the following computations of ∂M .

Example 4. Let M = En. Then ∂En = Sn−1.

Example 5. Let M = H2. Then ∂H2 = S1, as in the circle model, equivalence
classes of parallel lines are determine by the points along the boundary of the
disc.

Before we define half spaces in (M, d), we note that for a point A ∈ M ,
there is a unique geodesic ray in each equivalence class (one can also say in the
direction e), written γe,A which satisfies γe,A (0) = A. If we consider the case
M = E2, when given γe,A we can consider for a point t ∈ im γe,A, the open ball
B (t; d (t, A)) centered at t with radius d (t, A). The union

∪
t∈im γe,A

B (t; d (t, A))
then gives us a subspace whose closure is the closed half space in E2. This idea
is formalized in the following definition.

Definition 7. In a CAT(0) metric space (M, d), we define the open horoball with
respect to γe,A = γ, a geodesic ray with base point A in the direction e to be

He,A :=
∪

t∈im γ

B (t; d (t, A)) .

For the closed horoball, we simply take the closure of the open horoball He,A.

Example 6. In M = H2 seen as the circle model, we can compute He,A to be
the intersection of the Euclidean disc which is tangent to ∂M at e and whose
boundary passes through A.

Example 7. In S2, there do not exist any geodesic rays, and hence, we cannot
define a boundary or horoballs in this manner.

1.3.3 Properties of CAT(0) Spaces

CAT(0)-1. For all B ∈ ∂He,A, we have He,A = He,B .

CAT(0)-2. The set of horoballs based at e ∈ ∂M is linearly ordered by ⊆.

CAT(0)-3. For horoballs He,A′ ⊆ He,A and all B, C ∈ ∂He,A, we set B′ (resp. C ′)
equal to im γe,B ∩ ∂He,A′ . We then have d (B, B′) = d (C, C ′).

2 The Invariant Σ0 (G; A)

2.1 Control functions:

We begin with a few examples of control functions, and then give an explicit
definition.

Example 8. Consider the map h : G → M defined by choosing an origin b ∈ M

and setting h (g) = gb. This then satisfies h (gg′) = gh (g′), i.e. h is a G-map.

Definition 8. fM = {A ∈ P (M) | cardA < ∞} where P (M) denotes the power
set of M .
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Definition 9. We can consider an element λ ∈ RG of the group ring over R to
be a function λ : G → R in the following way. When λ =

∑
g∈G ngg, we set

λ (g) = ng.

Definition 10. Define the support of an element λ ∈ RG to be supp (λ) :=
{g ∈ G |λ (g) ̸= 0}.

Hence with this language, we can consider RG to be all functions λ : G → RG

with finite support. One can define the operations in the obvious manner and
show that the notions are equivalent.

Example 9. Consider h : ZG → fM defined by h (λ) = {gb | g ∈ supp (λ)}. This
once again is a G-transformation when we define g {a0, ..., ak} = {ga0, ..., gak} for
{a0, ..., ak} ∈ fM .

Definition 11. Let F be a finitely generated free G-module with basis X. We
define Y := GX = {gx | g ∈ G, x ∈ X}. Thus Y is a Z-basis of F on which G

operates freely, hence F = ZY = ⊕y∈Y Zy. We also have for any w ∈ F a unique
expression in terms of the basis w =

∑
y∈Y nyy.

We now come to our main definition of a control function.

Definition 12. To construct a control function h : F → fM , do the following:

1. choose for each x ∈ X an arbitrary h (x) ∈ fM \ {∅}

2. for y = gx ∈ Y define h (y) := gh (x);

3. for w ∈ F , define h (w) =
∪

y∈supp(w) h (y).

We note that such functions fulfill the following properties:

i. h (0) = ∅;

ii. h (gw) = gh (w) for all g ∈ G and all w ∈ F ;

iii. h (mw) = h (w) for m ∈ Z \ {0};

iv. h (w + w′) ⊆ h (w) ∪ h (w′).

Control functions don’t work nicely with addition. In some circumstances, we do
however have h (w + w′) = h (w) ∪ h (w′). A few examples are:

1. supp (w) ∩ supp (w′) = ∅;

2. w (y) ≥ 0 for all y ∈ Y .

Remark 1. Note that a control function h depends on the choice of basis X and
the assignment X → fM .

We will find it convenient to define generalized control functions.

Definition 13. A generalized control function is a map h : F → fM which
satisfies conditions i.–iv. above.
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A control function satisfies h (w) = ∅ iff w = 0, whereas a generalized control
function may not. One reason why the study of generalized control functions will
be useful is because for a control function h : F → fM and a homomorphism
ϕ : F ′ → F , the composition h ◦ ϕ is a generalized control function, but will not
be a control function in general.

Definition 14. We define an ϵ-neighborhood (Umgebung) of a set S ⊆ M to be
Uϵ (S) := U (S; ϵ) := {a ∈ M | ∃s ∈ S, d (s, a) < ϵ}.

Proposition 1. Let F be a finitely generated free G-module with respect to the
bases X. Then for a control function h : F → fM defined with respect to X and
a generalized control function h′ : F → fM , there exists δ > 0 such that for any
w ∈ F , we have h′ (w) ⊆ Uδ (h (w)).

Proof. Choose δ := max
{
d (a, b) | a ∈

∪
x∈X h (x) , b ∈

∪
x∈X h′ (x)

}
. The max-

ima are defined as the sets X, h (x) and h′ (x) are all finite sets. From this choice,
it is clear that h′ (x) ⊆ Uδ (h (x)) for all x ∈ X.

Note that for all g ∈ G, we have for A,B ∈ fM , gUδ (A) = Uδ (gA) as G acts
by isometries.

Now let w =
∑

y∈supp(w) nyy with y ∈ GX. By definition we have h (w) =∪
y∈supp(w) h (y) and h′ (w) ⊆

∪
y∈supp(w) h′ (y). As h′ (x) ⊆ Uδ (h (x)), we have

h′ (gx) ⊆ Uδ (h (gx)) for all g ∈ G. Hence

h′ (w) ⊆
∪

y∈supp(w)

h′ (y) ⊆
∪

y∈supp(w)

Uδ (h (y)) = Uδ (h (w))

as desired.

Corollary 1. Let h, h′ : F → fM be control functions defined with respect to X

and X′ respectively. There then exists δ > 0 such that for any w ∈ F , we have
h′ (w) ⊆ Uδ (h (w)) and h (w) ⊆ Uδ (h′ (w)).

Lecture 2

2.2 Limit points in ∂M

Definition 15. Let F be a finitely generated free G-module, and S ⊆ F . We
say that S has an accumulation point at e ∈ ∂M if for every horoball He there is
s ∈ S such that h (s) ⊆ He.

This definition is actually independent from the control function h, which we
formulate in the following proposition.

Proposition 2. If h, h′ : F → fM are two control functions, then h (s) ⊆ He

implies h′ (s) ⊆ He.

Proof.

Definition 16. Let A be a finitely generated G-module, and ϵ : F � A a G-
homomorphism. For a ∈ A define

Lϵ
A (a) :=

{
e ∈ ∂M | e is acc. point of ϵ−1 (a) ⊆ F

}
.

This definition is independent of the choice of ϵ. To prove this, we require a
couple of simple observations, namely:
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i. Lϵ
A (a) ∩ Lϵ

A (b) ⊆ Lϵ
A (a + b);

ii. Lϵ
A (ga) = gLϵ

A (a).

Proposition 3. If f : A → A′ is a G-homomorphism, with A and A′ finitely
generated G-modules, and there exist finite presentations ϵ : F � A and ϵ′ : F ′ �
A′, then Lϵ

A (a) ⊆ Lϵ′

A′ (f (a)).

Proof.

Corollary 2. Lϵ
A (a) is independent of the choice of ϵ.

Proof.

Because of this result, we write LA (a) := Lϵ
A (a).

Definition 17. Σ0 (ρ; A) =
∩

a∈A LA (a).

Recall that for this definition, G is a group and A is a finitely generated
G-module given by the action ρ of G on A.

2.3 Explicit Interpretation of e ∈ Σ0 (ρ,A)

2.3.1 Interpretation via a condition on finite generation

As our definition of Σ0 is independent of the choice of h, we pick a simple one that
will be easy to work with. With x ∈ X, define h (x) = {b} where b ∈ M is a chosen
origin, or base point. Thus we compute quite easily h (y) = h (gx) = {gb} for all
y ∈ Y . Thus h (λx) = supp (λ) · b, and furthermore h (

∑
λixi) = ∪i supp (λi) b

for all
∑

λixi ∈ F .
We now investigate exactly what it means in this case for e ∈ LA (a). The

condition e ∈ LA (a) means that for every horoball He there exists w ∈ ϵ−1 (a)
such that h (w) ⊆ He. To make this more concise, define

GHe = {g ∈ G | gb ∈ He} .

Thus h (w) ⊆ He means that w ∈ ZGHeX. We thus can conclude:

Proposition 4. e ∈ LA (a) if and only if a ∈ ZGHe
ϵ (X) for all horoballs He.

Remark 2.

Theorem 1. Σ0 (ρ, Z) = ∂M if and only if ρ is co-compact.

Proof. No proof given.

Theorem 2. Suppose the orbit Gb is discrete in M , with G+
e ̸= ∅ for all e ∈ ∂M

and set K := ker ρ. Then Σ0 (ρ,A) = ∂M if and only if A is a finitely generated
as a K-module.

Proof.

Lecture 3
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2.3.2 Dynamic Interpretation

Roughly said, in this section we will come up an equivalence with e ∈ Σ0 (ρ; A)
and the existence of a function f : F → F which satisfies for y ∈ Y

i. ϵ (ϕ (y)) = ϵ (y) and

ii. h (f (y)) is closer to e than h (y).

To make this precise, we need to utilize the properties of CAT(0) spaces
mentioned above.

Definition 18. Let b ∈ M be a chosen origin, and e ∈ ∂M . The Busemann
function with respect to b and e is βe,b : M → R which is defined for A ∈ M by
computing d (b, A′) where A′ = γe ∩ ∂He,A and b ∈ im γe. Then by convention,
if He,A ⊆ He,b we set βe (A) = d (b, A′) and if He,b ⊆ He,A we set βe (A) =
−d (b, A′).

Definition 19. We extend the Busemann functions to be defined on fM by
setting for L ∈ fM

βe (L) := max {βe (m) |m ∈ L} .

Definition 20. Let F be a finitely generated free ZG-module and f : F → F a
Z-endomorphism. We say that f pushes F towards e if there exists δ > 0 such
that

βe (h (f (w))) ≥ βe (h (w)) + δ

for all w ∈ F . Alternatively, we say that f pushes F in the direction e.

Theorem 3.

Σ0 (ρ; A) = {e | ∃f : F � F ∋ ϵ ◦ f = f and f pushes in direction e}

2.3.3 Pushing with G-homomorphisms

Observation 1. The action ρ : G → Isom (M) induces an action on the geodesic
rays, and furthermore, an action on ∂M .

Proposition 5. Supposing that e ∈ Σ0 (ρ;A), the Z-epimorphisms pushing F

towards e are G-homomorphisms if and only if Ge = e.

Proof.

Example 10. In the case where M = En and G acts by translations, we have
Ge = e.

Definition 21. Let b ∈ M be a chosen origin, a ∈ M and let e ∈ ∂M . We then
define χa

e : G → R by χa
e (g) := βe,a (gb) − βe,a (b).

Proposition 6. The map χa
e is a group homomorphism into the additive group

R and independent of the choice a. We thus write χe := χa
e .
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Proof.

χa
e (g1g2) = βe,a (g1g2b) − βe,a (b)

= βe,a (g1g2b) + (−βe,a (g2b) + βe,a (g2b)) − βe,a (b)

= (βe,a (g1g2b) − βe,a (g2b)) + (βe,a (g2b) − βe,a (b))

= χa
e (g1) + χa

e (g2)

From CAT(0)-3, we obtain for c ∈ M the equation βe,a (A) = βe,c (A)−βe,c (a).
We now compute

χa
e (g) = βe,a (gb) − βe,a (b)

= βe,c (gb) − βe,c (a) − (βe,c (b) − βe,c (a))

= βe,c (gb) − βe,c (b)

= χc
e (g) .

It is helpful to note that we can define an action of G on R which makes χe

G-equivariant. We define for r ∈ R the action g · r = χe (g) + r.

Definition 22. We define a useful monoid

Ge := {g ∈ G |χe (g) ≥ 0}

and the associated semi-group

G+
e := {g ∈ G |χe (g) > 0} .

The geometric interpretation of G+
e is that all of its elements push in the

direction of e, i.e. gb is closer to e than b. We likewise see that Ge is the set of
all elements which satisfy gb is not further away from e than b.

If we assume Ge = e for all e ∈ ∂M , we obtain yet another description of
Σ0 (ρ; A). Suppose A =

∑k
i=1 ZGai and set a = (a1, a2, ..., ak). Then

Proposition 7.

Σ0 (ρ; A) =
{
e | ∃Λ ∈ Mn

(
ZG+

e

)
∋ Λa = a

}
2.4 The Euclidean Case

We now drop the generality and focus on the case where G is finitely generated
and acts via left translation on G/G′ ⊗Z R ∼= En. That is, the action is given by
τ : G → Transl (G/G′ ⊗ R) where τ (g) (h ⊗ r) = g ⊗ 1 + h ⊗ r. In this case, we
make the convention that

Σ0 (G; A) := Σ0 (τ ; A)

as is only depends on the choice of G and the G-module A now.
With this added restriction, we gain intuition and a few nice properties which

we list here:

1. Via the vector space isomorphism M = G/G′ ⊗R ∼= Rn, we get an induced
inner product ⟨−,−⟩ on G/G′ ⊗ R.
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2. We also have the association ∂M = Sn−1, and thus every direction e is
given by the unit vector ue ∈ Sn−1.

3. We take the base point b to be b = 0.

4. Furthermore, Gue = ue for all ue ∈ ∂M , and the additive character χe

takes the form χe (g) = ⟨ue, g · b⟩.

5. The description of Σ0 in Proposition 7 is valid in this case. If the group G

is Abelian, we can then formulate a more convenient description of Σ0 by
the use of determinants.

Proposition 8. If the group G is Abelian, then

Σ0 (G; A) =
{
e | ∃µ ∈ ZG+

e ∀a ∈ A ∋ µa = a
}

=
{
e | ∃µ ∈ ZG+

e ∋ 1 − µ ∈ AnnZG (A)
}

Proof. (adjoint matrix trick and the description of Σ0 in Prop. 7)

Lecture 4
In addition to the above listed consequences of restricting our attention to

Euclidean metric spaces, we also have a few helpful descriptions of Σ0 to work
with, which we list here:

1. Σ0 (G; A) = {e |A is fin. gen. over ZGe}

2. Σ0 (G; A) = {e | ∃ G-Hom ϕ : F → F ∋ ϵϕ = ϕ and pushes F in direction e}

3. Σ0 (G; A) = {e | ∃Λ ∈ Mn (ZG+
e ) ∋ Λa = a ∋ {ai} generate A}

Theorem 4. Σ0 (G; A) = ∂M if and only if A is finitely generated as a module
over the kernel K = ker τ of the operation τ : G → Transl (M).

Proof.

For G a finitely generated Abelian group, we have

Σ0 (G; A) =
{
e ∈ ∂M | ∃λ ∈ ZG+

e ∋ 1 − λ ∈ AnnZG A
}

.

Thus for finitely generated Abelian groups G, this description shows Σ0 only
depends on the group G and the annihilator of A, hence we conclude Σ0 (G;A) =
Σ0 (G; ZG/ AnnZG (A)).

We now make a few computational observations about Σ0 (G; A).

1. Σ0 (G; ZG/IJ) = Σ0 (G; ZG/I) ∩ Σ0 (G; ZG/J).

2. Σ0 (G; ZG/IJ) = Σ0 (G; ZG/ (I ∩ J)).

3. Σ0 (G; ZG/I) = Σ0
(
G; ZG/

√
I
)

4. Thus from observations 1–3 we conclude that when ZG is Noetherian, com-
puting Σ0 (G; ZG/I) for any ideal I is reduced to computing Σ0 (G; ZG/pi)
where the pi are prime ideals in ZG such that

√
I = p1 ∩ · · · ∩ pl.

Lecture 5
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Example 11 (1-Relator Modules).

Definition 23. A one relator ZG-module is a module of the form ZG/I where
I = λZG = (λ) for λ ∈ ZG.

Observation 2. Given a specified direction e ∈ ∂M , we then recall χe : G → R
defined by χe (g) = ⟨ue, h (g)⟩ (where ue ∈ Sn−1 is the corresponding unit vec-
tor to the direction e) is a homomorphism. With this homomorphism, there is
an R-grading of ZG given by ZG = ⊕r∈RZ (Gr \ G+

r ). That is, for λ ∈ ZG,
we can write λ =

∑
r∈R λr where χe (λr) = r. In particular, supp (λr) =

{g ∈ supp (λ) |χe (g) = r}.
From the R-grading on ZG, we can define a valuation ve : ZG → R∞ as

follows: set ve (λ) := min {r |λr ̸= 0} for λ ̸= 0 and ve (0) = ∞. We also define
λe := λve(λ), which we also call the initial term of λ. We observe that ve satisfies
the following properties which almost makes it into a valuation in the normal
sense:

1. ve (λ + µ) ≥ min {ve (λ) , ve (µ)};

2. ve (gµ) = χe (g) + ve (µ);

3. ve (0) = ∞;

4. ve (−λ) = ve (λ).

Lemma 1. If ZG does not have any non-trivial zero divisors, then ve (λµ) =
ve (λ) + ve (µ) and (λµ)e = λeµe.

Proof. Write λ = λe + λ+ and µ = µe + µ+. Then λµ = λeµe + λ+µe + λeµ
+ +

λ+µ+. By assumption, λeµe ̸= 0 and ve (λµ − λeµe) > ve (λ) + ve (µ), whence
the result follows.

We now restrict our attention to the case where G is a finitely generated
Abelian group. In this case, we can utilize the description from Propositon 8 to
the following description of Σ0 (G; ZG/ (λ)):

Σ0 (G; ZG/ (λ)) =
{
e | ∃ζ ∈ ZG+

e ∋ 1 − ζ ∈ AnnZG (A)
}

=
{
e | ∃µ ∈ I ∧ ∃ζ ∈ ZG+

e ∋ µ = 1 − ζ
}

= {e | ∃µ ∈ I ∋ µe = 1} .

For especially nice group rings ZG, we can make the result even more precise.

Theorem 5. If ZG contains only trivial zero divisors and trivial units (those of
the form ±g for g ∈ G), then

Σ0 (G; ZG/ (λ)) = {e |λe ∈ ±G} .

Proof. As (λ) = {µλ |µ ∈ ZG}, we need to determine when (µλ)e = 1 by the
above description of Σ0 (G, ZG/ (λ)). By Lemma ? we have (µλ)e = µeλe. We
have µeλe = 1 if and only if λe is a unit in ZG, and by assumption, the only units
are the elements of ±G, whence the theorem holds.
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Remark 3. If G contains a nontrivial element of finite order, then ZG contains
non-trivial zero divisors. If |g| = n, then (g − 1)

(
1 + g + g2 + · · · + gn−1

)
= 0.

The finitely generated free Abelian groups Q = Zn have group rings ZQ which
do not contain non-trivial zero divisors and non-trivial units.

To give a very explicit example, we compute Σ0
(
Z2; ZZ2/ (λ)

)
where Z2 =

⟨x, y | [x, y]⟩ and λ = 2 · 1 + x + y + x2y2. The set Σ0 in this case is illustrated
in Figure 1. We make the association x → (1, 0) and y → (0, 1) for the following
computations. The actual computation of Σ0

(
Z2; ZZ2/ (λ)

)
lies in computing

χ(a,b) ((0, 0)), χ(a,b) ((1, 0)), χ(a,b) ((0, 1)) and χ(a,b) ((2, 2)) for all directions e =
(a, b) ∈ S1, and determining the which obtain the minimum value. It is easy to
verify the following chart:

e = (a, b) λe in ±G?
a, b > 0 2 · 1 no

a = 0 ∧ b > 0 2 · 1 + x no
b = 0 ∧ a > 0 2 · 1 + y no

b < 0 ∧ −b/2 < a y yes
b < 0 ∧ −b/2 = a y + x2y2 no
a < 0 ∧ −a/2 < b x yes
a < 0 ∧ −a/2 = b x + x2y2 no

−b/2 > a ∧ −a/2 > b x2y2 yes

from which Figure 1 follows by Theorem 5.

Figure 1: The solid black line represents the points in Σ0
(
Z2; ZZ2/ (λ)

)
while the

dotted line represents ∂R2 which we are identifying with S1.

b

b

b

bb

2 · 1

x

y

x2y2

Figure 2: This polyhedron, namely, the convex hull of supp (λ), enables an easy
way to compute Σ0

(
Z2; ZZ2/ (λ)

)
.
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Example 12. We now look at the case when G is Abelian and A = ZG/p where
p is a prime ideal, or equivalently, ZG/p is an integral domain. Let L = κ(A) be
the field of fractions of A.

Now given e ∈ ∂M , we have the additive character χe(−) = ⟨ue,− · b⟩ where
ue is the unit vector representing the direction e and b is the origin. We can
extend an additive character to a valuation ve : ZG → R∞. We generalize the
construction in the following proposition.

Proposition 9. For v ∈ Hom(Q, R) an additive character, we extend v to a
valuation v∗ : ZQ → R∞ by defining:

i. v∗(λ) = min {v(q) : q ∈ supp(λ)};

ii. v∗(0) = ∞.

Proof. We need to show that for λ, µ ∈ ZQ the equations

i. v∗(λµ) = v∗(λ) + v∗(µ) and

ii. v∗(λ + µ) ≥ inf {v∗(λ), v∗(µ)}

are satisfied.
We write λ =

∑
q∈supp(λ) λqxq, likewise for µ and we compute

λµ =
∑

q∈supp(λ)
r∈supp(µ)

(λqµr)xq+r.

We now see

v∗(λµ) = min {v(q + r) : q ∈ supp(λ), r ∈ supp(µ)}

v∗(λ) + v∗(µ) = min {v(q) : q ∈ supp(λ)} + min {v(r) : r ∈ supp(µ)}

and it is clear that v(qr) = v(q) + v(r) will be minimal when v(q) and v(r) are
minimalwhence the first equation holds.

From the easily verified inclusion supp(λ+µ) ⊆ supp(λ)∪supp(µ), the second
equation follows.

With this construction, we can define Ae := im π|ZGe and Ie := im π|ZG+
e
. We

thus obtain the following diagram:

ZG+
e

� � //

π|
ZG

+
e����

ZGe
� � //

π|ZGe
����

ZG

π

����
Ie

� � // Ae
� � // A

� � // L

ZG/p

Proposition 10. e ∈ Σ0(G; A)c if and only if Ie ̸= Ae, or equivalently, e ∈
Σ0(G; A) if and only if Ie = Ae.
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Proof. We utilize the description of Σ0(G;A) from Proposition 8, namely Σ0(G;A) =
{e | ∃µ ∈ ZG+

e ∋ 1 − µ ∈ AnnZG(A)}.
Suppose Ie = Ae. Then 1 ∈ Ie—that is, there exists λ ∈ ZG+

e such that 1 = λ.
Thus there exists γ ∈ p such that 1 = λ+γ, and we have 1−λ = γ ∈ p = Ann(A).
Hence e ∈ Σ0(G; A).

Now suppose e ∈ Σ0(G; A). Then there exists λ ∈ ZG+
e such that 1 − λ ∈

Ann(A) = p, hence 1−λ = γ for some γ ∈ p. Now let µ ∈ Av such that ve(µ) = 0.
Then µ = µ(λ + γ) = µλ + µγ. We compute ve(µλ) = ve(µ) + ve(λ) = ve(λ) > 0.
Thus µ = µλ + µγ = µλ ∈ Ie. Clearly for those µ ∈ Ae such that ve(µ) > 0 we
have µ ∈ Ie, whence Ie = Ae.
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