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In this paper, we will investigate the notion of cohomology with respect to a presheaf and
how it relates to the cohomology of topological objects su as fiber bundles and fibrations.
e goal being to compute Hq(Ω(Sn); Z), that is, the cohomology groups of the loop space
of an n-sphere.

In order to make the paper readable, we will assume working knowledge with the ba-
sics of: manifolds; fiber bundles; de Rham cohomology (H∗

dR), Če-de Rham cohomology
(H∗

D), Če cohomology (H∗(B,F)) and singular cohomology with coefficients in A (de-
noted by H∗(B;A)). Some results will be cited without proof, but the statements will be
given in the appendix. Our discussion is broken up into three sections: in section , we intro-
duce presheaves and correct a few mistakes in [Bo] concerning these definitions; in section
, we investigate the path fibration of a topological space; and in section , we compute
H∗(Ω(Sn); Z) (see Notation  in section ). roughout this paper, all maps are continuous
unless otherwise noted. As another disclaimer, when we work with fiber bundles or mani-
folds, we will be assuming they are smooth, and the involved maps are smooth. Also in this
situation, contractible will mean diffeomorphic to some Rk , whereas in the general case, we
will take contractible to mean that there exists a deformation retraction of the space to a
point.¹

 Presheaves and Cohomology

Definition . Let (B, T ) be a topological space. We define a category Open(B) by seing
its objects to be OOpen(B) := T and the morphisms to be

MOpen(B) :=
{
iVU : V ⊆ U |V, U ∈ T

}
.

Definition . A presheaf on a space B is a contravariant functor F : Open(B) → C where
C is typically Ab, Gp or ModR.

W: e following definitions differ from those in [Bo, pg. ] whi we will show
to be flawed.

Example . e trivial presheaf with group G on B is given by: F(U) = G for all U , and
F(iVU ) = idG for all morphisms iVU . is trivially is a functor F : Open(B) → Ab, hence is
a presheaf.

Definition . A constant presheaf with group G on a space B is a presheaf F with the prop-
erty that for any contractible open set U ∈ Open(B), F(U) = G and for any contractible
open sets V ⊆ U , F(iVU ) = idG.

¹is definition of a contractible space is not universally accepted. Some authors instead say a space is con-
tractible if the space is homotopic to a point.





Remark . e trivial presheaf is a constant presheaf, but it is in general not the only one.
ere is a constant presheaf whi sends coproducts to products, i.e. F(U

⨿
V ) = G

∏
G

for U, V contractible.

Definition . A locally constant presheaf with group G on B is a presheafF whi is locally
naturally equivalent to a constant presheaf. at is, for every point x ∈ B, there is a
neighborhood N(x) for whi F|N(x) is a constant presheaf.

Example . For a fiber bundle π : E → B with fiber F , the presheaf Hq : Open(B) →
ModR given byHq(U) := Hq

dR(π−1(U) for allU ∈ Open(B)with themorphismsHq(i) :=
i∗ for all i.

is is a locally constant presheaf because for any contractible open set U , we have
Hq(U) = Hq

dR(π−1(U)) = Hq
dR(F ) by the Poincaré lemma.

If it is not clear from context what we mean by Hq , we will write Hq(π : E → B). In
[Bo], the ambiguous notation Hq(F ) where F is the fiber of π : E → B is used. is does
indeed have its merits, so we will use this notation as well if it is clear what is intended.

Example . Not every locally constant presheaf is constant. If π : M → S1 is the Möbius
band, one will see that the presheaf H0 is not constant. Consider the following good cover
of S1:

U1

U2 U3

and suppose the Möbius band M is osen su that the twist occurs in U1 ∩ U2. en,
one computes H0(Ui) = H0(Ui ∩ Uj) = R for all i and j. However, exactly one of the
maps H0(i121 ) or H0(i122 ) must be the isomorphism whi sends 1 � // − 1 . erefore,
the presheaf H0 cannot be constant.

Remark  (Discrepancy with [Bo]). e above definitions, as already mentioned, differ from
those found in [Bo, pg. ]. e definitions from [Bo] are contained in the following
excerpt:

e trivial presheaf with group G is the presheaf F whi associates to every
connected open set the group G and to every inclusion V ⊂ U the identity
map: F(U) → F(V ). We say that a presheaf is a constant presheaf if it is
isomorphic to the trivial presheaf, and that it is a locally constant presheaf if it
is locally isomorphic to the trivial presheaf, i.e., every point has a neighborhood
U so that F|U is a constant presheaf.

First off, the structure imposed on F in the definition of a trivial presheaf is not enough
to make it unique. See remark .





Secondly, for a fiber bundle π : E → B with fiber F , the presheaf Hq(π : E → B) is
not locally constant according to this definition. Consider an S1-bundle over B whi has
dimension . For any U contractible about a point x, i.e. (in this context) U ∼= D2, we have
H1(U) ∼= R. Contained in D2, there is an open annulus whi we dennote by A. As A has
the cohomology of S1, we have H1(A) = H1

dR(A × S1) ∼= R × R. us we cannot have
H1(iAU ) : R → R × R the identity map. erefore, following the definitions from [Bo], the
presheaves Hq(π : E → B) are not locally constant.

is error propagates further in the section, however. It is claimed that the presheaf Hq

with respect to the trivial bundle M ×F provides an example of a locally constant presheaf
whi is not constant in general. ere are two ways one could aempt to remedy the
situation: one can either use the definition for locally constant by [Bo] and not consider Hq

as locally constant, or ange the definition to the one whi has been given in definitions 
and . en this example makes sense only if M is contractible, and thenHq(M) = Hq(F )
by the Poincaré lemma. Furthermore, it can be easily seen that indeedHq must be a constant
presheaf.

A nice property about fiber bundles that we would like to have more generally, is that
there is a spectral sequence whi converges to the cohomology of the fiber bundle, and we
have in many cases a good understanding of the E2 term, e.g. Leray’s eorem. ese two
facts help us compute the cohomology of many spaces, and thus compute Če cohomology
of spaces with respect to the locally constant presheafHq . We hope to generalize these prop-
erties to arbitrary locally constant presheaves, but how far can one take it? What properties
and results still hold?

One important property about a constant presheaf F , and thus of Hq of a fiber bundle
with simply connected base and fiber with finite dimensional cohomology, is that

Hp(B,F) ∼= F ⊗Z Hp(B, Z) ()

or when working with manifolds over R, Hp(B,F) ∼= F ⊗R Hp(B, R) ∼= F ⊗R Hp
dR(B).

Our first abstraction is to consider the construction ofCp(U,Hq)² for a general surjective
map π : E → B. In general, Hq is not a loacally constant presheaf for a general surjection,
and so, we do not get the isomorphism in equation  as evinced by the next example.

Example . Consider the projection π : S1 → [−1, 1] whi vertically projects the unit
circle onto the horizontal axis. If we consider the good cover

U = {[−1,−1/4) , (−1/2, 1/2) , (1/4, 1]}

of I := [−1, 1]. e presheaf H0 on I is not locally constant. is is easily seen by com-
puting H0(π−1(B(0; ϵ))) ∼= R2 and H0(π−1(B(1; ϵ))) ∼= R for ϵ sufficiently small. Since
these computations hold for all sufficiently small ϵ, no neighborhoods N(0) or N(1) can be
osen su thatH0|N(0)(U0) ∼= H0|N(1)(U1) forU0 ⊆ N(0) andU1 ⊆ N(1) contractible.

By the Poincaré lemma, Hq(U) = 0 for all q ̸= 0, and for dimensional reasons E2 =
E∞ = H∗

dR(S1). Pictorially, we have

E2 = R R

²see the appendix for more on the Če complex





us we cannot rely on our knowledge of Hp
dR(I) to tell us if Hp(U,H0) vanishes or not

as we can for constant presheaves.

 e Path Fibration

One way to get some of these properties is to consider the concept of a fibration or a fibering.
is construction will give us some of our sought out properties. e main property we get
is the following:

for π : E → B, ∃ a space F ∋ ∀ contractible U ⊆ B, Hq(U) ∼= Hq(F ), ()

or, in other words, Hq are locally constant presheaves with respective groups Hq(F ) for
some fixed space. With this extra structure, we can consider the spectral sequence with
Ep,q

2 = Hp(B,Hq) whi then converges to H∗
D(E). e more general nature of π : E →

B lets us consider more spaces, but the property  permits some teniques to simplify
maers. In this section, we are considering general spaces, continuous maps, and integer
singular cohomology. We denote the functor whi associates a space with its singular
integer coain abelian group as S∗.

Definition . Let B be a space with basepoint ∗. e path space of B is the set P (B) =
{γ : [0, 1] → B | γ(0) = ∗} given the compact-open topology. It is equippedwith the canon-
ical projection π : P (B) → B given by π(γ) = γ(1). We denote Ω(B) := π−1(∗)

Definition . A fibration or fibering of B is a map π : E → B whi satisfies the following
homotopy covering property:

Given any map f : Y → E and any homotopy f t : Y × I → B of
f := π ◦ f su that s0 ◦ f : t = f (where s0(y) = (y, 0)), there exists
a homotopy ft of f whi covers f t. at is, there is a commutative
diagram

()

Y
f //

s0

��

f CC
CC

CC
CC

!!CC
CC

CC
CC

E

π

��
Y × I

ft //

ft

=={
{

{
{

{
{

{
{

{
B

It is clear that covering spaces are fibrations over their base space. We can also see that
the path space P (B) is a fibration over the base space B.

Example . We show that π : P (B) → B is a fibration. We thus begin with a diagram

Y
f //

s0

��

f

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
E

π

��
Y × I

ft // B





and seek to li f t to a homotopy ft : Y ×I → E. By definition, f(y) is a path inB whihas
terminal point f0(y) = π(f(y)). For t0 ∈ I define ft0(y) = f(y) ∗ f t(y)|[0,t0] where the
∗ denotes the path product of first traversing f(y), and then traversing f t(y)|[0,t0]. is is
evidently a proper liing as f0(y) = f(y) and π(ft0(y)) = π(f(y)∗f t(y)|[0,t0]) = ft0(y).
Hence π : P (B) → B is a fibration.

Proposition . a.) For any contractible subset U ⊆ B, we have π−1(U) homotopic to
π−1(p) for p ∈ U .

b.) If p, q ∈ B are in the same path component, then π−1(p) is homotopy equivalent to
π−1(q). If B is path connected, then π−1(p) ≃ π−1(∗) = ΩB.

Proof. a.) Since U is contractible, there is a homotopy Ft : U × I → U su that F1 = idU

and F0(x) = p for all x ∈ U and p ∈ U . We thus have a path Ft(x) : I → U with
initial point x and terminal point p.

We claim that the maps ι : π−1(p) → π−1(U) and ϕ : π−1(U) → π−1(p) where

ϕ(f : I → B) := f · Ft(f(1)) =
{

f(2x) 0 ≤ x ≤ 1/2
F2x−1(f(1)) 1/2 ≤ x ≤ 1

are homotopically inverse to one another. e non-trivial homotopy is showing ιϕ ≃
idπ−1(U). e desired homotopy is given by

Gt(f) =
{

f((1 − t/2)−1 · x) 0 ≤ x ≤ 1 − t/2
F 2x

t − 2
t +1 1 − t/2 ≤ x ≤ 1

is homotopy continuously stretes the path f along the path Ft(f(1)) until it reaes
ϕ(f). It is a routine maer of working with the compact-open topology that the map
Gt is continuous, and therefore, a homotopy.

b.) By assumption, there is a path γ with initial point p and terminal point q; also γ−1

has initial point q and terminal point p. We define ϕp : π−1(p) → π−1(q) and ϕq :
π−1(q) → π−1(p) by: ϕp(f) := f · γ (the product path), and ϕq(f) := f · γ−1. e
homotopy equivalences ϕq ◦ϕp ≃ idπ−1(p) and ϕp◦ϕq ≃ idπ−1(q) are given by a similar
construction as was seen in part a.) of the proof of this proposition.

Proposition . a.) Any two fibers of a fibering over an arcwise-connected space have the
same homotopy type.

i. A path γ : [0, 1] → B with γ(0) = a and γ(1) = b induces a (not unique) map
Γ1 : Fa → Fb. We also denote this induced map by I(γ).

ii. If γ ≃ µ are homotopic paths, then they induce homotopic maps Γ1 ≃ M1.

b.) For every contractible open set U , the inverse image π−1U has the homotopy type of
the fiber Fa, where a ∈ U .

Proof. a.) i. From the path γ, we define Γ : Fa × I → B by Γt(y) = γ(t) or Γ = γ ◦π2.
We thus have the diagram:





Fa
� � //

s0

��

DD
DD

DD

!!DD
DD

DD
D

E

π

��
Fa × I

Γ //

Γ

==z
z

z
z

z
z

z
B

As the above diagram is commutative, imΓ1 ⊆ Fb, and we identify the map Γ1 :
Fa × {1} → Fb ↩→ E with Γ1 : Fa → Fb.

ii. Let H : γ
∼−→ µ. As we have

Fa
� � //

s0

��

DD
DD

DD

!!DD
DD

DD
D

E

π

��
Fa × I

Γ //

Γ

==z
z

z
z

z
z

z
B

Fa
� � //

s0

��

DD
DD

DD

!!DD
DD

DD
D

E

π

��
Fa × I

M //

M

==z
z

z
z

z
z

z
B

we see that M0 = Γ0. us we may construct G : Fa × I → E by

I

Fa
Γ1 M1πFa

whi is evidently continuous by the continuity of Γ, M and the fact that the defi-
nitions agree on the subspaces where they intersect, i.e. t = 1/3, 2/3. As γ ≃ µ,
we have a homotopy H : I × I → B su that H0 = γ, H1 = µ. e maps G and
H then induce the following diagram by the covering homotopy property of E.

Fa

Fb

⊆ E

γ

µ
b

a
b
b

s0

∼= H◦πI×I

G

π

R





we thus see that R covers the homotopy H , so that M1 = R1(y, 1) : Fa × {1} ×
{1} → Fb, Γ1 = R0(y, 1) and thus Rt(y, 1) is a homotopy of the maps M1 ≃ Γ1.

We now prove the result. By the assumption that B is arcwise connected, given any two
points a, b ∈ B, there is a path γ connecting them. We take γ(0) = a and γ(1) = b. e
paths γ and γ−1 induce maps of the fibers I(γ) : Fa → Fb and I(γ−1) : Fb → Fa. By
the previous result, we have I(γ−1) ◦ I(γ) ≃ I(γ−1 · γ) ≃ I(a) = idFa and similarly,
I(γ) ◦ I(γ−1) ≃ idFb

whi establishes the claim.

b.) By assumption that U ⊆ B is contractible, there is a deformation retraction of U to a
point p whiwe denote by Γ : U×I → U . With this deformation retraction, we create
the following diagram with the help of the homotopy covering property:

π−1U� _

s0

��

id // π−1U

π

����
π−1U × I

π×id //

Γ

55kkkkkkkkkkkkk
U × I

Γ // U.

Since imΓ1 ⊆ π−1(p) = Fp, we can factor Γ1 as

Γ1 = ι ◦ ϕ : π−1U
ϕ // Fp

� � ι // π−1U .

us Γ gives us a homotopy between idπ−1U and ι ◦ ϕ.

We now show that ϕ ◦ ι ≃ idFp . By the covering homotopy property, we have the
following diagram:

Fp

s0

��

� � ι // π−1U
id //

s0

��

π−1U

π

����
Fp × I

T

ggggggggg

33gggggggggggggggggg

��
ι //

T

88π−1U × I

Γ

55lllllllllllllllll
π×id // U × I

Γ // U

Observe that we may take T = Γ ◦ ι as the covering homotopy of the map T. As Γ is a
deformation retraction, we have imT ⊆ Fp, and thus we may factor this map as

Tt = ι ◦ Φt : Fp × I
Φ // Fp

� � ι // π−1U .

With this, we verify that Φ0 = idFp and Φ1 = ϕ ◦ ι. us Φ establishes that idFp ≃ ϕ ◦ ι,
with whi we conclude that π−1U ≃ Fp





Remark . I am curious to know if the same proposition holds true if the other definition of
contractibility is used.

Proposition . If π : E → B is a fibering where B is simply connected and E is path
connected, then the fiber is path connected.

Proof. As the E0,0
2 term trivially survives to E∞, we have E0,0

2 = E0,0
∞ = H0(E) = Z.

By equation , we have E0,0
2 = H0(B, H0(F )) = H0(F ) from whi the proposition

follows.

 e Cohomology of Ω(Sn)

We begin our computation by illustrating the tenique with the special case with n = 2.
We thus have the following situation

ΩS2 // PS2

π

��
S2

that is, S2 is the base space of the path fibration PS2, and the associated fiber is ΩS2. As S2

is simply connected, we conclude by the results  and  that the locally constant presheaves
Hq(π : PS2 → S2) on S2 are indeed constant. We write Hq(ΩS2) = Hq(ΩS2) as it is
the constant presheaf with group Hq(ΩS2). We therefore have Ep,q

2 = Hp(S2,Hq(ΩS2)).
Utilizing equation , we then have the zeroth column given by E0,q

2 = H0(S2,Hq(ΩS2)) =
Hq(ΩS2). By proposition , we can also compute that the boom row is given by Ep,0

2 =
Hp(S2, H0(ΩS2)) = Hp(S2, Z). As

Hp(S2, Z) =
{

Z p = 0, 2
0 otherwise

we conclude that all colums other than E0,q
2 and E2,q

2 are zero by equation . From the
description of the domain and codomain of the differentials di, we see that di = 0 for all
i ≥ 3. We thus have the following diagram of E2:

Z

p

q

Z

d2

Weprove by induction thatHq(ΩS2) = Z for all q. It has already been explained that the
base case with q = 0 is satisfied. For our induction step, suppose Hq(ΩS2) = E0,q

2 = Z. By
equation , we conclude that E2,q

2 = Z. Consider the map d0,q+1
2 : E0,q+1

2 → E2,q
2 . Since





PS2 is contractible, E3 = E∞ = H∗
D(PS2) only has one nonzero term E0,0

3 = Z, from
whi we conclude the differential d0,q+1

2 : E0,q+1
2 → E2,q

2 must yield trivial cohomology.
at is, ker d0,q+1

2 = 0, and im d0,q+1
2 = R, or d2 is an isomorphism. erefore, E0,q+1

2 =
Hq+1(ΩS2) and the proof is complete.

An entirely analogous proof works for the general case of ΩSn for n ≥ 2 to give

Hq(ΩSn) =
{

Z q = k(n − 1) for k ∈ N0

0 otherwise

 Appendix

Notation . e notation H∗(B; G) represents singular cohomology of the topological space
B with coefficients in G where G is most oen a group or vector space. We will later see
H∗(B,F) whi arises from a different concept!

Definition . We now delve into computing cohomology of a space with respect to a presheaf
F . To do so, one first defines the Če complex of an open coverG = {Gα} of a spaceB with
respect to F . is is given by Cp(G,F) :=

∏
α0<···<αp

F(Gα1···αp) with differential δ.
e differential δ is given by first defining ∂i :

⨿
Uα0···αp → Uα0···α̂i···αp by ∂i|Uα0···αp

:
Uα0···αp

⊆ Uα0···α̂i···αp
. en define δ :=

∑
i(−1)i∂i. One then defines Hp(B,F) :=

lim−→Hp(G,F).

Lemma . If M is a manifold, then H∗
dR(M × R) ∼= H∗

dR(M). We obtain as a corollary
H∗(M × Rk) = H∗(M).

Proposition . Let U be an open cover of a connected topological space B and N(U) is the
nerve of the cover. If π1(N(U)) = 0, then every locally constant presheaf on U is constant.

Proposition . If the space B has a good cover U, then π1(B) ∼= π1(N(U)).

R
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