Oral Qualifying Exam Syllabus

Glen M. Wilson glenmatthewwilson@gmail.com

1 Committee

Proposed: Charles Weibel, Chris Woodward, Steve Ferry, Konstantin Mischaikow.

2 Algebraic Topology and Cobordism Theory

2.1 Algebraic Topology

- 1. The Fundamental Group (the van Kampen theorem, covering spaces)
- 2. Homology
 - (a) Simplicial, singular, and cellular homology
 - (b) Simplicial approximation
 - (c) Eilenberg-Steenrod homology theories
- 3. Cohomology
 - (a) Simplicial, singular, cellular, de Rham cohomology
 - (b) Cohomology with local coefficients, presheaf cohomology
 - (c) Cup, cap, and cross products
 - (d) Thom isomorphism theorem
 - (e) Künneth Formulas
 - (f) Poincaré duality, Alexander duality, Lefschetz duality
 - (g) Universal Coefficients for Homology
 - (h) Eilenberg-Steenrod cohomology theories
- 4. Homotopy Theory
 - (a) Whitehead's theorem
 - (b) Cellular approximation theorem, CW approximation theorem
 - (c) The Hurewicz theorem
 - (d) Fibrations, long exact sequence, Gysin sequence
 - (e) Homotopy groups of spheres, stable structure, Freudenthal suspension theorem
 - (f) Homotopy construction of cohomology
- $5.\$ Generalized cohomology and homology theories
 - (a) Spectra, Eilenberg-MacLane spectra
 - (b) The Brown Representability Theorem
 - (c) Steenrod algebra, cohomology operations

2.2 Cobordism Theory

- 1. h-cobordism theorem
- 2. (B, f) manifolds and cobordisms
- 3. Computation of MO_* , MSO_* , MU_*
- 4. Stiefel-Whitney classes and Pontrjagin classes
- 5. Oriented cohomology theories

2.3 References

- 1. Allen Hatcher, Algebraic Topology.
- 2. Raoul Bott; Loring Tu, Differential Forms in Algebraic Topology.
- 3. Davis & Kirk, Lecture Notes in Algebraic Topology.
- 4. Vick, Homology Theory.
- 5. J. P. May, A Concise Course in Algebraic Topology.
- 6. Tom Weston, An Introduction to Cobordism Theory.
- 7. Milnor & Stasheff Characteristic Classes.
- 8. Stong, Notes on Cobordism Theory.
- 9. J. F. Adams, Stable Homotopy and Generalised Homology

3 Homological Algebra and Category Theory

3.1 Homological Algebra

- 1. Chain complexes of modules
- 2. Derived functors
- 3. Tor, Ext, and $\lim_{n \to \infty} 1$
- 4. Universal coefficient theorems
- 5. Spectral sequences
- 6. Hyperhomology, Grothendieck spectral sequence, exact couples

3.2 Category Theory

- 1. Adjoint functors, adjoint functor theorems
- 2. (Co-)limits
- 3. Abelian categories
- 4. Simplicial sets
- 5. Monoidal categories
- 6. Model categories

3.3 References

- 1. Hilton & Stammbach, A Course in Homological Algebra.
- 2. Saunders Mac Lane, Categories for the Working Mathematician.
- 3. Charles Weibel, $An\ Introduction\ to\ Homological\ Algebra.$
- 4. J. P. May, Simplicial Objects in Algebraic Topology.