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. I

We begin by introducing some notation and definitions to get our investigation of com-
pactly supported cohomolgy started. We then proceed to compute the compactly supported
cohomology groups of simple spaces like ∗ = R0, R1 and R2. From these special cases, we
will see how to generalize the computation to Rn. ereaer, we will prove the general ver-
sion of the Poincaré Lemma, whi states H•

c (M × R) ∼= H•−1
c (M). is paper follows

the method of proof found in [B&T-].

. D  N

Some may find it useful to have the following constructions in mind throughout this
paper.

Notation .: Let SmMan be the category with objects all finite dimensional smooth mani-
folds and with morphisms all smooth maps.

Notation .: Let ISmMan ⊂ SmMan be the subcategory with objects all smooth manifolds
and morphisms all maps f : M → N ∈ SmMan so that f is a diffeomorphism on its image
and im (f) ⊆ N is open. (e “I” stands for inclusion).

Notation .: Let PSmMan ⊂ SmMan be the subcategory with objects all smooth manifolds
and morphisms all proper maps f : M → N ∈ SmMan. Recall that f : M → N is proper
if for any compact subset C ⊆ N , then f−1 (C) is also compact.

Definition .: ForM ∈ SmMan defineΩ•
c (M) = {ω ∈ Ω• (M) | supp (ω) is compact }.

Recall that supp (ω) = {x ∈ M |ωx ̸= 0}.
We would like to extend Ω•

c to a functor. is cannot be done in an obvious (and mean-
ingful) way to all of SmMan. Two extensions are possible using ISmMan or PSmMan.

Definition .: Let f : M → N ∈ PSmMan. en if ω ∈ Ω•
c (N), the pull-ba f∗ω

has compact support in M , since supp (f∗ω) = f−1 (supp (f)). en definining Ω•
c :

PSmMan → C by Ω•
c (f : M → N) = f∗ : Ω•

c (N) → Ω•
c (M) gives a contravariant

functor where C can be taken to be Ch (R−Mod), i.e. ain complexes ofR-modules (vector
spaces) with degree 0ain maps as morphisms.

Definition .: Let f : M → N ∈ ISmMan. en if ω ∈ Ω•
c (M), we may define

f∗ωx =

{(
f−1

)∗
ωx if x ∈ im (f)

0 otherwise .

is is a compactly supported form onN since supp (f∗ω) = f (supp (ω)) is compact, and it
is smooth because supp (f∗ω) is a compact subset of f (M) ⊆ N whi is open, so extending
by 0 is smooth. en Ω•

c (f : M → N) = f∗ : Ω•
c (M) → Ω•

c (N) defines a (covariant)
functor Ω•

c : ISmMan → Ch (R−Mod). roughout this paper, we will be concerned with
this extension of Ω•

c .
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. C  H•
c (∗)  H•

c (R)

Definition .: For M ∈ ISmMan, define H•
c (M) = H• (Ω•

c (M)). We may consider
H•

c : ISmMan → C as a functor where C is either the category of N0-graded R-modules
with degree 0morphisms, or the category of graded-commutative R-algebras with degree 0
graded algebra homomorphisms.

We would like to compute H•
c (M) for some M ∈ SmMan. Perhaps the easiest case to

start with is whenM = R0 = ∗. We first observe that

Ω•
c (∗) = 0 // Ω0

c (∗) // 0

Ω•
c (∗) = 0 // R // 0

from whi it immediately follows that H0
c (∗) = R andHk

c (∗) = 0 for k ̸= 0.
Now let us compute H•

c (R). We have

Ω•
c (R) = 0 // Ω0

c (R)
d // Ω1

c (R) // 0.

First we see that

H0
c (R) = ker

(
d0
)

= {f ∈ C∞
c (R) | df

dt
≡ 0}

= {f ∈ C∞
c (R) | ∀t ∈ R, f (t) = c}

= {0} .

Nextwe observe that ker d1 = Ω1
c (R) = {f (t) dt | f ∈ C∞

c (R)} and im d0 = {∂f
∂t dt | f ∈

Ω0
c (R)}. A standard approa in homological algebra for determining the structure of

Ω1
c (R) / im d0 is to find an R-linear map A : Ω1

c (R) // //Rk where Rk is a guess of what
H1

c (R) should be, and then show that kerA = im d0. e nicest linear map on compactly
supported 1-forms around is

∫
R : Ω1

c (R) → R, so let’s try that. We first notice that
∫
R is a

surjective linear map, since there exists a bump function ρ : R → R with compact support
su that

∫
R ρ dt = 1. Let us fix this oice and call e = ρ dt. Now we verify that indeed

ker
∫
R = im d0. First let f ∈ Ω0

c (R) with supp (f) ⊆ [a, b]. en∫
R
df =

∫
R

∂f

∂t
dt

=

∫
[a,b]

∂f

∂t
dt

= f (b)− f (a)

= 0.

so im d0 ⊆ ker
∫
R. Now suppose g (t) dt ∈ ker

∫
R. en we can considerG (t) =

∫ t

−∞ g dt.
e fundamental theorem of calculus tells us that G is differentiable with dG

dt (t) = g (t).
If G (t) is compactly supported, then it will follow that g (t) dt ∈ im d0. Since g (t) dt is
compactly supported,

∫ t

−∞ g dt is constant when t /∈ supp (g). For t < a := inf{x |x ∈
supp (g)}, we have G (t) = 0 and for t > b := sup{x |x ∈ supp (g)} we have G (t) =∫
R g dt = 0; hence G is compactly supported with supp (G) ⊆ [a, b]. us it follows
ker
∫
R = im d0, so H1

c (R) ∼= R.
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e previous calculation shows that two 1-forms are cohomologous if and only if they
have the same total integral. It therefore is reasonable to try to single out a representative
1-form for ea distinct class. We have in fact already done this with our oice of a bump
1-form e satisfying

∫
R e = 1. So for g dt ∈ Ω1

c (R), we can take the representative of its
cohomology class to be

(∫
R g dt

)
e. at is, g dt−

(∫
R g dt

)
ρ dt should be a boundary of

something. e argument above says that

g dt−
(∫

R
g dt
)
· ρ dt = d

(∫ t

−∞
g dt−

(∫
R
g dt
)
·
∫ t

−∞
ρ dt
)
.

We can look at this in terms of ain maps and ain homotopies. We have two ain
maps idΩ•

c(R) : Ω
•
c (R) → Ω•

c (R) and r : Ω•
c (R) → Ω•

c (R) where r0 = 0 and r1 (g dt) =(∫
R g dt

)
ρ dt. e claim that g dt and r (g dt) determine the same cohomology class is equiv-

alent to saying that id and r induce the same maps on cohomology. To prove this, it would
suffice to come up with a ain homotopy K : Ω•

c → Ω•
c . We, in fact, have already done

this! By necessity, defineK0 = 0, andK1 (g dt) =
∫ t

−∞ g dt−
(∫

R g dt
) ∫ t

−∞ ρ dt. e lin-
earity of K1 follows from linearity of integration. A diagram may help make the situation
clear:

0 // Ω0
c (R)

d //

id

��

r0

��

K0

}}||
||

||
||

||
||

Ω1
c (R) //

id

��

r1

��

K1

{{wwwwwwwwwwww
0

0 // Ω0
c (R)

d // Ω1
c (R) // 0

To e that K is a ain homotopy between id and r, we need to e that id−r =

± (Kd+ dK). at is, for f ∈ Ω0
c (R), we need f = ±Kdf and for g dt ∈ Ω1

c (R) we
need g dt−r (g dt) = d (K (g dt)). We compute

K (df) (t) = K

(
∂f

∂t

)
(t)

=

∫ t

−∞

∂f

∂t
dt−

(∫
R

∂f

∂t
dt
)
·
∫ t

−∞
ρ dt

=

∫ t

−∞

∂f

∂t
dt

= f (t)

whi verifies the first condition. We have already seen that g dt−r1 (g dt) = d (K (g dt)),
whi is the second condition. HenceK is a ain homotopy between id and r.

. C  H•
c (Rn)

e key to generalizing the previous computation to Rn is to rethink the map r. Let us
consider Rn+1 = Rn×R where we use coordinates x1, ..., xn on Rn and t on R. ere are
two maps to define in order to generalize r in a useful manner.

First we define aain map π∗ : Ω•
c (Rn × R) → Ω•−1

c (Rn). To define π∗, observe first
that two types of forms generateΩ•

c (Rn × R): i.) forms without “dt”, i.e. f (x, t) dxI where
f ∈ Ω0

c (Rn × R), I = (i1, ...ij), and dxI = dxi1 dxi2 · · · dxij ; ii.) forms with “dt”, i.e.
f (x, t) dxI dt. We defineπ∗ (f (x, t) dxI) = 0 andπ∗ (f (x, t) dxI dt) =

(∫
R f (x, t) dt

)
dxI

and extend by linearity. at π∗ is a ain map is easily verified.
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e next map is e∗ : Ω•−1
c (Rn) → Ω•

c (Rn × R) whi is induced by our oice of
e = ρ dt ∈ Ω1

c (R); define e∗ (ω) = ω ∧ e. Again, it is straightforward to verify that e∗ is a
ain map.

We now observe that r = e∗ ◦ π∗ when we take n = 0 in the above constructions.
It is also easy to verify that π∗ ◦ e∗ = idΩ•

c (Rn). If we can show—just as in the case of

R—that e∗ ◦ π∗ ≃ id, then it will follow that H• (Ω•
c (Rn × R)) ∼= H•

(
Ωc (Rn)

•−1
)
∼=

H•−1 (Ω•
c (Rn)) so we can computeH•

c (Rn) inductively. An intuitive idea of what this is
saying is that compactly supported top dimensional forms f (x, t) dx1 · · · dxn can be inte-
grated over Rn coordinate by coordinate using Fubini’s eorem whi then gives us a real
number whi determines the cohomology class of f (x, t) dx1 · · · dxn.

e picture of the general situation is this:

0 // Ω0
c (Rn × R) d //

π∗

��

Ω1
c (Rn × R) d //

π∗

��

· · · d // Ωn+1
c (Rn × R) //

π∗

��

0

0 // 0

e∗

��

// Ω0
c (Rn)

d //

e∗

��

· · · d // Ωn
c (Rn) //

e∗

��

0

0 // Ω0
c (Rn × R) d // Ω1

c (Rn × R) d // · · · d // Ωn+1
c (Rn × R) // 0

We are trying to construct a ain homotopy K between idΩ•
c (Rn×R) and e∗ ◦ π∗ whi

looks like

· · · d // Ωk−1
c (Rn × R) d //

π∗

��

K

��

id

!!

Ωk
c (Rn × R) d //

π∗

��

K

��

id

!!

Ωk+1
c (Rn × R) d //

π∗

��

K

��

id

!!

· · ·

· · · d // Ωk−2
c (Rn)

d //

e∗

��

Ωk−1
c (Rn)

d //

e∗

��

Ωk
c (Rn)

d //

e∗

��

· · ·

· · · d // Ωk−1
c (Rn × R) d // Ωk

c (Rn × R) d // Ωk+1
c (Rn × R) d // · · ·

As with π∗, we will define K on type i. and type ii. forms separately, whi will then
determineK . For type i. forms defineK (g (x, t) dxI) = 0, and for type ii. forms define

K (g (x, t) dxI dt) =
(∫ t

−∞
g (x, t) dt

)
dxI −

(∫
R
g (x, t) dt

)(∫ t

−∞
e

)
dxI

whi bears a striking resemblance with the definition of K in the case for R. K is again
linear by linearity of integration, and wewill now show thatK is aain homotopy operator
(up to sign).

Lemma .: (Poincaré Lemma) We have H•
c (Rn × R) ∼= H•−1

c (Rn).

Corollary .:

Hk
c (Rn) =

{
R if k = n

0 otherwise.
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Proof. We prove this lemma by proving Ω•
c (Rn × R) is ain homotopy equivalent to

Ω•−1
c (Rn). All that remains is to show id−e∗π∗ = ± (dK −Kd). is is just a compli-

cated calculation, whi we include for completeness.
We e this first on k-forms of type i., i.e. g (x, t) dxI . We compute

(id−e∗π∗) (g dxI) = g dxI −e∗ (π∗ (g dxI))

= g dxI −e∗ (0)

= g dxI

and

(dK −Kd) (g dxI) = −K (d (g dxI))

= −K

((∑
i

∂g

∂xi
dxi dxI

)
+

∂g

∂t
dt dxI

)

= −K

(
(−1)

q

(∑
i

∂g

∂xi
dxI dxi

)
+ (−1)

q ∂g

∂t
dxI dt

)

= (−1)
k+1

(∫ t

−∞

∂g

∂t
dt
)
dxI −

(∫
R

∂g

∂t
dt
)(∫ t

−∞
e

)
dxI

= (−1)
k+1

g dxI .

Now we e the equality on forms of type ii., i.e. g (x, t) dxI dt:

(id−e∗π∗) g (x, t) dxI dt = g (x, t) dxI dt−
(∫

R
g (x, t) dt

)
dxI ∧e

and

dK (g dxI dt) = d

((∫
−∞

g dt
)
dxI −

(∫
R
g dt
)(∫ t

−∞
e

)
dxI

)
= g dt dxI +

∑
i

(∫ t

−∞

∂g

∂t
dt
)
dxi dxI −

(∫
R
g dt
)
e dxI

−
∑
i

(∫
R

∂g

∂xi
dt
)(∫ t

−∞
e

)
dxi dxI

Kd (g dxI dt) = K

(∑
i

∂g

∂xi
dxi dxI dt

)

=
∑
i

(∫ t

−∞

∂g

∂xi
dt
)
dxi dxI−

∑
i

(∫
R

∂g

∂xi
dt
)(∫ t

−∞
e

)
dxi dxI

In computing (dK −Kd) (g dxI dt), the red and blue terms cancel with ea other respec-
tively so we are le with

(dK −Kd) (g dxI dt) = g dt dxI −
(∫

R
g dt
)
e dxI

= (−1)
k

(
g dxI dt−

(∫
R
g dt
)
dxI e

)
= (−1)

k
(id−e∗π∗) (g dxI dt) .

Hence the result follows. �
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. G    

Observe that the computation of Hc (Rn) shows that the functor Hc is not homotopy
invariant. It is at least invariant under diffeomorphisms. e generalized Poincaré Lemma
can then be seen as a first aempt to figure out the relation between the compactly supported
cohomology of homotopic manifolds in a restricted case, i.e. trivial line bundles over a
manifold M . is can be extended easily to trivial finite dimensional vector bundles over
a manifold M . Computing the compactly supported cohomology of general vector bundles
π : E → M will have to wait for another paper. We will establish the following theorem in
this section.

eorem .: We haveH•
c (M × R) ∼= H•−1

c (M).
Essentially everything done in the previous section will go through with only minor

modifications if we can figure out a similar description for forms of “type i. and type ii.”
Note that our description in the previous section was heavily reliant on working with Rn.
Let us define forms of type i. onM to be those given by fπ∗ϕ where f ∈ Ω0

c (M × R) and
ϕ ∈ Ω• (M), and forms of type ii. to be those forms given by fπ∗ϕ dt. A straightforward
partition of unity argument shows that Ω•

c (M × R) is generated as an R vector space by
forms of type i. and type ii.

With this definition of forms of type i. and type ii., we can proceed to define the relevant
maps π∗ : Ω•

c (M × R) → Ω•−1
c (M), e∗ : Ω•−1

c (M) → Ω•
c (M × R) andK . For a type i.

form fπ∗ω, define π∗ (fπ
∗ω) = 0, and for a type ii. form fπ∗ω dt, define π∗ (fπ

∗ω dt) =(∫
R f dt

)
ω. For any form ω ∈ Ω•−1

c (M) define e∗ (ω) = ω ∧ e where we recall that
e ∈ Ω1

c (R) given by e = ρ dt.
Once again, we can verify thatπ∗ and e∗ are coainmaps, and thatπ∗e∗ = idΩ•−1

c (M×R).
So to prove the theorem, it suffices to show e∗π∗ ≃ id. e ain homotopy K in this case
is defined byK (fπ∗ω) = 0 and

K (fπ∗ω dt) =
(∫ t

−∞
f dt
)
ω −

(∫
R
f dt
)(∫ t

−∞
e

)
ω.

It is then straightforward (yet complicated) to verify that id−π∗e∗ = ± (dK −Kd),
and is entirely analogous to the proof in the case forM = Rn.
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