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0. INTRODUCTION

We begin by introducing some notation and definitions to get our investigation of com-
pactly supported cohomolgy started. We then proceed to compute the compactly supported
cohomology groups of simple spaces like * = RY, R! and R?. From these special cases, we
will see how to generalize the computation to R™. Thereafter, we will prove the general ver-
sion of the Poincaré Lemma, which states H? (M x R) = H2~1 (M). This paper follows
the method of proof found in [B&T-1982].

1. DEFINITIONS AND NOTATION

Some may find it useful to have the following constructions in mind throughout this
paper.
Notation 1.1: Let SmMan be the category with objects all finite dimensional smooth mani-
folds and with morphisms all smooth maps.

Notation 1.2: Let [SmMan C SmMan be the subcategory with objects all smooth manifolds

and morphisms all maps f : M — N € SmMan so that f is a diffeomorphism on its image
and im (f) C N is open. (The “T” stands for inclusion).

Notation 1.3: Let PSmMan C SmMan be the subcategory with objects all smooth manifolds
and morphisms all proper maps f : M — N € SmMan. Recall that f : M — N is proper
if for any compact subset C' C N, then f~! (C) is also compact.

Definition 1.4: For M € SmMan define Q2 (M) = {w € Q°* (M) | supp (w) is compact }.
Recall that supp (w) = {z € M |w, # 0}.

We would like to extend 22 to a functor. This cannot be done in an obvious (and mean-
ingful) way to all of SmMan. Two extensions are possible using ISmMan or PSmMan.
Definition 1.5: Let f : M — N € PSmMan. Then if w € Q2 (IV), the pull-back f*w
has compact support in M, since supp (f*w) = f~!(supp(f)). Then definining Q2 :
PSmMan — Cby Q2 (f: M — N) = f* : Q2 (N) — Q¢ (M) gives a contravariant
functor where € can be taken to be Ch (R—Mod), i.e. chain complexes of R-modules (vector

spaces) with degree 0 chain maps as morphisms.
Definition 1.6: Let f : M — N € ISmMan. Then if w € Q¢ (M), we may define

{(f_l)*wgC ifz € im(f)

Jewz =
i 0 otherwise .

This is a compactly supported form on N since supp (f«w) = f (supp (w)) is compact, and it
is smooth because supp ( f.w) is a compact subset of f (M) C N which is open, so extending
by 0 is smooth. Then Q2 (f: M — N) = f. : Q2 (M) — Q¢ (N) defines a (covariant)
functor ¢ : ISmMan — Ch (R—Mod). Throughout this paper, we will be concerned with
this extension of 2.



2. COMPUTATION OF H? () AND H? (R)

Definition 2.7: For M € ISmMan, define H? (M) = H*® (22 (M)). We may consider
H? : ISmMan — € as a functor where € is either the category of Ny-graded R-modules
with degree 0 morphisms, or the category of graded-commutative R-algebras with degree 0
graded algebra homomorphisms.

We would like to compute H? (M) for some M € SmMan. Perhaps the easiest case to
start with is when M = R® = . We first observe that

Q2 (+) = 0—=Q(x) —>0

Qe (+) = 0 R 0

from which it immediately follows that H? () = R and H” (%) = 0 for k # 0.
Now let us compute H? (R). We have

Q2 (R) = 0 —= Q0 (R) —= Q! (R) —=0,

c

First we see that
H{ (R) = ker (d°)
—ecrm® | =o
={feCZR)[VLER, f(t) =c}
={0}.

Next we observe thatkerd* = QL (R) = {f (¢)dt | f € C>° (R)} andim d° = {% dt|fe
Q% (R)}. A standard approach in homological algebra for determining the structure of
Q! (R) /imd° is to find an R-linear map A : Q! (R)——=R* where R* is a guess of what
H! (R) should be, and then show that ker A = im d°. The nicest linear map on compactly
supported 1-forms around is fR : QL (R) — R, so let’s try that. We first notice that fR isa
surjective linear map, since there exists a bump function p : R — R with compact support
such that fR pdt = 1. Let us fix this choice and call e = pdt. Now we verify that indeed
ker [, = imd". Firstlet f € Q0 (R) with supp (f) C [a, b]. Then

_[9f
A#me&

_ [ o
‘Aﬂm“
=7 ()~ f(a)
= 0.

soimd’ C ker [;. Now suppose g (t) dt € ker [;,. Then we can consider G (t) = fioo gdt.
The fundamental theorem of calculus tells us that G is differentiable with dd—? (t) = g (t).
If G (t) is compactly supported, then it will follow that g (¢) dt € imd°. Since g (¢)dt is
compactly supported, fjoo g dt is constant when ¢ ¢ supp (g). Fort < a := inf{z |z €
supp (g)}, we have G (t) = 0 and for ¢ > b := sup{z |z € supp (g)} we have G (t) =
Jrgdt = 0; hence G is compactly supported with supp (G) C [a,b]. Thus it follows
ker [, =imd’, so H} (R) = R.



The previous calculation shows that two 1-forms are cohomologous if and only if they
have the same total integral. It therefore is reasonable to try to single out a representative
1-form for each distinct class. We have in fact already done this with our choice of a bump
1-form e satisfying [ e = 1. So for gdt € QL (R), we can take the representative of its
cohomology class to be (fR g dt) e. That is, gdt — (f]R g dt) p dt should be a boundary of
something. The argument above says that

(o) e[ s (fo5) [ o)

We can look at this in terms of chain maps and chain homotopies. We have two chain
maps idge g) : Q8 (R) = Q2 (R) and 7 : Q2 (R) — Q¢ (R) where v’ = 0 and ! (g dt) =
( Jz9 dt) p dt. The claim that g dt and r (g dt) determine the same cohomology class is equiv-
alent to saying that id and r induce the same maps on cohomology. To prove this, it would
suffice to come up with a chain homotopy K : Q22 — 2. We, in fact, have already done
this! By necessity, define K* = 0, and K* (gdt) = ffoo gdt— ( [z gdt) f pdt. The lin-
earity of K follows from linearity of integration. A diagram may help make the situation
clear:

O (R) 0l (R) 0
KO 7-0 id Kl 'r'1 id
00— Q0 (R) —X— Q! (R) 0

To check that K is a chain homotopy between id and r, we need to check that id —r =
+ (Kd+ dK). Thatis, for f € Q% (R), we need f = +Kdf and for gdt € QL (R) we
need gdt —r (gdt) = d (K (g dt)). We compute

K=& ()0
- [ (L5 [
_f o
-1

which verifies the first condition. We have already seen that g dt —r! (gdt) = d (K (g dt)),
which is the second condition. Hence K is a chain homotopy between id and .

3. COMPUTATION OF H? (R™)

The key to generalizing the previous computation to R™ is to rethink the map r. Let us
consider R**! = R"™ x R where we use coordinates x1, ..., £, on R” and ¢ on R. There are
two maps to define in order to generalize  in a useful manner.

First we define a chain map 7, : Q8 (R™ x R) — Q2! (R™). To define ., observe first
that two types of forms generate 22 (R™ x R): i.) forms without “dt”, i.e. f (x,t) dx; where
f e QR"xR), I = (i1,...i;), and dx; = dx;, dxg, - -~ dx;,; ii.) forms with “dt”, i
f (z,t) dx; dt. We define . (f (z,t) dx;) = Oand 7, (f (z,1) dx; dt) = ([ f (z,t) dt) dX[

and extend by linearity. That 7, is a chain map is easily verified.



The next map is e, : 25! (R") — Qf (R™ x R) which is induced by our choice of
e=pdte Qi (R); define e, (w) = w A e. Again, it is straightforward to verify that e, is a
chain map.

We now observe that » = e, o m, when we take n = 0 in the above constructions.
It is also easy to verify that m, o ex = idge(rn). If we can show—just as in the case of
R—that e, o m, ~ id, then it will follow that H* (Q2 (R" x R)) = H*® (QC (R”)'_1> =
H*=1(Q2 (R™)) so we can compute H? (R™) inductively. An intuitive idea of what this is
saying is that compactly supported top dimensional forms f (x,t) dx; - - - dx,, can be inte-
grated over R coordinate by coordinate using Fubini’s Theorem which then gives us a real
number which determines the cohomology class of f (z,t) dx; - - - dx,.

The picture of the general situation is this:

OHQQ(RTLXR)i)Qi(RnXR)*d>"'*d>Q?+1(R”xR) 0

0 0 QWORY) —L > L S QrRY) ——>

0—> 00 (R" x R) —4> QL (R* x R) —%> .- —%> Qn+1l (R x R) —> 0

We are trying to construct a chain homotopy K between idgern xr) and e, o . which
looks like

"*d>Q’g_1(Rn « R) *d>QI§(Rn « R) *d>QI§+1(Rn « R) _d ...

T
d

R?) — ...

€x

"*d>ngl(R"XR)*d>QI§(RnXR)L>Q§+1(R"XR)*(1>-H
As with m,, we will define K on type i. and type ii. forms separately, which will then
determine K. For type i. forms define K (g (x,t) dx;) = 0, and for type ii. forms define

K (g (2, t) dx dt) = (/_:Og(ac,t)dt) dx; — (/Rg(a:,t)dt> (/_;e) dx

which bears a striking resemblance with the definition of K in the case for R. K is again
linear by linearity of integration, and we will now show that K is a chain homotopy operator
(up to sign).

Lemma 3.8: (Poincaré Lemma) We have H? (R" x R) =2 H2~! (R").

Corollary 3.9:

R ifk=n

0  otherwise.

it ) - {



Proof.  We prove this lemma by proving Q¢ (R™ x R) is chain homotopy equivalent to
Q2~1 (R™). All that remains is to show id —e, 7, = & (dK — Kd). This is just a compli-
cated calculation, which we include for completeness.

We check this first on k-forms of type i., i.e. g (,t) dx;. We compute

(id —esmy) (gdxr) = gdx; —es (74 (g dxy))
= gdx; —e, (0)
= gdx;

and

(dK - Kd) (9 dXI) = —K(d (9 dXI))
= ((ZfﬁidXZdX1> +Z‘Zdtd){[>
— ( (Z 89 dx; dxl> (71)‘1%@, dt>

o (] e ([29) ([ )

_ ( )k:+1

gdxy.

Now we check the equality on forms of type ii., i.e. g (z,t) dx; dt:

(id —e,my) g (x,t) dxy dt = g (x,t) dxy dt — (/ g (z,1) dt) dx; Ne
R

and

akoivya - a(( [ o) ([ o) ([ )on)

t
:gdtdxj—i-Z( ?dt) dx; dx; — (/gdt)edx;
)
_Z</ 8$gldt> (/ )dXidX]

o, ;dxr dt)
dg dg '
_ZU . dt) dxidx]—zi:( | e, dt) </_Oce) dx; dx;

In computing (dK — Kd) (g dxy dt), the red and blue terms cancel with each other respec-
tively so we are left with

Kd (gdx; dt) (

(dK — Kd) (gdx; dt) = gdtdx; — (/gdt> edx;y
R

= (1) (gde dt— (/Rgdt> dx; e)

= (-1)* (id —e.m,) (g dxr dt) .

Hence the result follows. A



4. GENERALIZATION TO ARBITRARY SMOOTH MANIFOLDS

Observe that the computation of H. (R™) shows that the functor H, is not homotopy
invariant. It is at least invariant under diffeomorphisms. The generalized Poincaré Lemma
can then be seen as a first attempt to figure out the relation between the compactly supported
cohomology of homotopic manifolds in a restricted case, i.e. trivial line bundles over a
manifold M. This can be extended easily to trivial finite dimensional vector bundles over
a manifold M. Computing the compactly supported cohomology of general vector bundles
7w : E — M will have to wait for another paper. We will establish the following theorem in
this section.

Theorem 4.10: We have H® (M x R) = H*~1 (M).

Essentially everything done in the previous section will go through with only minor
modifications if we can figure out a similar description for forms of “type i. and type ii”
Note that our description in the previous section was heavily reliant on working with R™.
Let us define forms of type i. on M to be those given by f7*¢ where f € Q¥ (M x R) and
¢ € Q° (M), and forms of type ii. to be those forms given by fr*¢dt. A straightforward
partition of unity argument shows that Q¢ (M x R) is generated as an R vector space by
forms of type i. and type ii.

With this definition of forms of type i. and type ii., we can proceed to define the relevant
maps 7, : Q8 (M x R) — Q21 (M), e, : Q271 (M) — Q8 (M x R) and K. Foratype .
form fr*w, define m, (fm*w) = 0, and for a type ii. form fr*w dt, define 7, (fr*wdt) =
(J fdt)w. For any form w € Q= (M) define e, (w) = w A e where we recall that
e € QL (R) given by e = pdt.

Once again, we can verify that 7, and e, are cochain maps, and that me,. = idge—1 (MxR)"
So to prove the theorem, it suffices to show e, 7, =~ id. The chain homotopy K in this case
is defined by K (f7*w) = 0 and

e ([ sa)o ([14) (/)

It is then straightforward (yet complicated) to verify that id —m.e. = £+ (dK — Kd),
and is entirely analogous to the proof in the case for M = R".
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