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0. INTRODUCTION

In group theory, it is a fundamental question to determine what information about a
group is necessary and sufficient to make a group finitely presented. In this paper, we develop
the theory of X-invariants due to Robert Bieri and Ralph Strebel [Bieri] which provides an
answer to this question for the class of metabelian groups.

We begin our study of X-invariants with a digression on group extensions and basic
definitions used throughout the paper. From there we define the ¥-invariants and establish
their basic properties. We then devote a section to examples of computing the invariant
> 4. The computation of 3 4 is difficult in general; much work in the field is on developing
methods to compute these invariants. In the last section, we sketch the proof of the main
theorem.

1. GRoUP EXTENSIONS

Definition 1.0.1: Let IV and ) be groups. An extension of Q by N is a short exact sequence’

L

1 N G—/=Q 1.

We remark that the information which determines an extension is the group G along
with the two maps ¢ and 7. The reader is cautioned from thinking that an extension is
determined solely by the group G.

Definition 1.0.2: A morphism of extensions is a map of the chain complexes. That is, Given
(G,t,m) and (G', !/, 7") extensions of @ by N, a morphism ¢ : (G, ¢, 7) — (G, ,7') is
given by a commutative diagram

L us

1 N G Q 1
J{@v \Lqﬁc l%}
1 Nt —"5Q 1

Definition 1.0.3: Two extensions are considered equivalent if there is a morphism ¢ : G —
G’ so that ¢y = idy and ¢ = idg. From the 5-lemma, this implies ¢ is an isomorphism
in the category of groups.

Definition 1.0.4: For groups N and Q, define the set of extensions of @ by N tobe & (Q, N).
Define F (Q, N) := €(Q, N) / ~ where ~ is the equivalence of extensions.

If N is an Abelian group, an extension of () by N posesses more structure. Specifically,
@ acts on N via conjugation through G. For g € ), where ¢ € G is such that 7 (¢) = gand
for any a € N, define G- @ := qag~'. (Note that we make the standard identification of NV

!Caution: Some authors define this to be an extension of N by Q. We justify this terminology as it agrees
nicely with the cohomology of @) with coefficients in /N. See proposition 12.



with its image in G.) In this situation, we typically denote NV by A and write it additively. It
is routine to verify that this action is well defined. Furthermore, the (Q-action on NV satisfies
Vg € Q,a,a’ € N,q-(a+d') =q-a+q-d,ie N isa@Q-module. Given a group extension
of @ by N, we call this Q)-module structure on N the induced @-module structure on N.
Definition 1.0.5: Let () be a group. A @-module is an Abelian group A equipped with a
(Q-action that satisfies:
q-(a+d)=q-a+q-d.

In other words, a Q-module structure on A is a group homomorphism ¢ : @ — End (A).

Alternatively, a (Q-module structure on A is equivalent to A being a ZQ-module where
Z.Q) is the group ring of Q.
Definition 1.0.6: Given a Q-module A with ¢ : @ — End(A), we define &, (@, A) to be the

subset of £ (Q, A) which contains all extensions that induce the given Q-module structure
on A.

Definition 1.0.7: We define the support of A\ = >’ _5n4q € ZQ to be supp (\) =
{g€Q:ny #0}.

The definition of supp is motivated by interpreting A\ € ZQ as a function A : Q) —
Z. When A = >_ o nqq, then A(q) := ng. Then one can say that the group ring ZQ
is the collection of all functions A : ¢ — Z with finite support. We will often use this
interpretation of group ring elements.

Definition 1.0.8: Consider a )-module A. Define the semi-direct product of the )-module
A tobe A x Q which is the group on the set A x ) with operation given by (a, ¢)*(a’, ¢") =
(a+ q-d,qq"). Note that if the Q-module structure is trivial, i.e. ¢-a = a forall ¢ € Q,
a € A, the semi-direct product is just the direct product @ x A.

Definition 1.0.9: We define the split extension of the ()-module A to be
where ¢ (a) = (a,1) and 7 (a,q) = q.

Example 1.0.10: Investigating the extension classes in E (Za, Zo X Zs) illustrates that it is
possible for there to be more than just the split extension in 4 (Za, Z3). Observe that

1 (i?) Qs Qs/(®) —=1

shows Qs € E4(Z2,Z3) where ¢(q) = idz,. The split extension in E(Z2, Z3) is the direct
product Z3. Thus as Qg is not Abelian, the above extension of g is not the split extension.

Example 1.0.11: In € (Z,Zs3) the extensions (Z,¢,m1), (Z,t,m2) given by ¢ (n) = 3n,
m1 (n) =n mod 3, m3 (n) = 2n mod 3 are not equivalent. They are, however, isomor-
phic. This illustrates that an extension is not determined by the group alone, and thus one
must always specify the maps ¢ and © when considering an extension.

Proposition 1.0.12: Consider a ()-module A, where @ is not necessarily Abelian. Then
there is a bijection £ (Q, A) = H? (Q, A). Through this bijection, we determine a group
structure on € (Q, A).

Definition 1.0.13: A metabelian group is a group G for which there exists a short exact
sequence A>—=G —>() where A and () are Abelian groups.



We now may ask, “What conditions on a metabelian group are necessary and sufficient
for it to be finitely presented?” It was thought before the introduction of X-invariants that
an answer might depend upon which extension class the extension determined in £ (@, A).
However, the main result of this paper shows that the finite presentability of a metabelian
group A>—>G —=() is determined by the (J-module A alone. That is, the split exten-
sion A x @ is finitely presented if and only if every extension group in € (Q, A) is finitely
presented. This result is furthermore sharp with regard to E (Q, A). That is, there are ex-
amples of Abelian groups ) and A for which there are finitely presented and not finitely
presented groups in F (Q, A).

Convention: From here on, () is a finitely generated Abelian group with finite free rank
k@ = n,ie. Q = Z"™ @ T(Q) where T(Q) is the torsion subgroup, and A is finitely
generated as a ()-module unless otherwise noted.

2. INTRODUCTION TO X 4

Definition 2.0.14: Let R be a (not necessarily commutative) ring with 1 and let I" be a totally
ordered Abelian group. A valuation v on R with valuesin I is any map v : R — I'o, which
satisfies:

i) v(zy) = v(z)+v(y);
i) v(z+y)>inf{v(z),v(y)}
iii.) v(0) =00, v (1) =0.
Remark 2.0.15: The condition v (1) = 0 is necessary to dispose of the trivial case v(K) =

00, which does not correspond with the other ideas of valuations and valuation rings. For
more on valuation rings and valuations, see [Bourbaki].

Definition 2.0.16: An additive character is a group homomorphism v : Q — (R, +).
Additive characters easily induce valuations v, : Z{ — R, in the traditional sense
discussed in the previous definition. We formulate this in the following proposition.

Proposition 2.0.17: For v € Hom (Q, R) an additive character, we extend v to a valuation
Uy : ZQ) — R, by defining:

i) v (A) =min{v (q) : ¢ € supp (A)};
ii.) vs (0) = oo.
Proof.  'We need to show that for A\, i € Z() the equations
i) ve (Ap) = v (A) + vi (1) and
i) ve (A+ p) > inf {o. (A), v, (1)}

are satisfied.
We write A = ) A(q)g, likewise for p and we compute
A=Y (Mg)u(r)) gr.

g€Esupp(A)
rEsupp(p)

g€supp(A)



We now see
vx (M) = min{v (¢ +7) : g € supp (A), r € supp (u) }

Vs (A) + 04 (1) = min{v (q) : ¢ € supp (A\)} + min{v (r) : v € supp (1)}

and it is clear that v (¢r) = v (¢) + v () will be minimal when v (¢) and v (r) are minimal;
hence the first equation holds.

From the easily verified inclusion supp (A + 1) C supp (A\) Usupp (i), the second equa-
tion follows. >

Our main tool (the Z-invariant) comes from studying Hom (Q,R). Let Q@ = Z"® T (Q)
be a decomposition of () into the direct sum of the torsion subgroup and the complementary
space which is isomorphic to Z™. We define e; := (d;1, di2, ..., 0in,) & 0 where J;; is the
Kronecker delta. We now consider the homomorphism 6 : @Q — Z"™ defined by 0 (¢;) := e;.

Let w = (uy,...,u,) € R. We then can define a valuation, v,, in the natural way, by
setting vy, (e;) = u;. In other words, vy, (¢) = (u, 6 (q)).

The map 6 then induces an R-vector-space isomorphism:
Definition 2.0.18: 6* : R” — Hom (Q, R) which is defined by 6* (u) := v,,.

This construction also holds for any map 0 : Q — Z™ — R™ with finite kernel.

Definition 2.0.19: We are now in the position to define a topology on Hom (@, R) via the
isomorphism * for our specific §. However, the induced topology is really independent from
the choice of 6 as Hom (@, R) is a topological vector space, and there is only one topological
vector space of dimension n, namely R™.

We will mainly be interested in the proper submonoids of () defined for a valuation
v € Hom (Q,R)as Q, := {q € Q| v (q) > 0}. Suppose thatv € Hom (Q, R) and k € R*.
Then v and k - v are both additive characters which additionally satisfy Q,, = Q... We thus
introduce an equivalence relation on Hom (@, R) \ {0} as we are really interested only in
the submonoids of () determined by additive characters.

Definition 2.0.20: For v,w € Hom (Q,R) \ {0}, we say v ~ w iff there exists k € R such

that v = k-w. This defines an equivalence relation and we can thus construct the topological

quotient space of this relation; we annote it as S (Q) := (Hom (@, R) \ {0}) / ~.
Elements of S (@) will be written as T for v € Hom (Q, R) \ {0}.

Proposition 2.0.21: The space S (@) is homeomorphic to S”~1.

A monoid @), determines a monoid ring Z(Q), in the same way that a group ring is
constructed. That is, ZQ, = {A : Q, — Z||supp()\)| < oo} is the free Abelian group with
a basis given by @), with multiplication defined by extending the operation in @Q),, over the
addition by distributivity, i.e. (3_, 14q) (32, mer) = 32, ngm.qr.

Definition 2.0.22: Let ¢ € Q. Then define H, := {7 |v (¢) > 0}.

The subsets H,, of S (Q) correspond to the hemispheres in S™~*. This can be seen easily
via the map 6 as hemispheres in S™~! are defined for a direction u € S"~ ! as H, :=
{z € "' | (u,z) > 0}. We thus see the important fact that these sets are open.

We will find it useful to generalize this notation to the group ring Z@Q).

Definition 2.0.23: For A € Z() define Hy := {v| v, (A) > 0}.

Proposition 2.0.24: Hy =) Hg, hence H) is also open.

g€supp(\)



Proof. This is clear by definition of v, (A\) = min {v (¢) | ¢ € supp (\)}. >
We may now define our main tool ¥ 4.

Definition 2.0.25: Let A be a finitely generated ()-module. Then
Y(Q,A) =34 :={v€ S(Q) | Ais finitely generated over ZQ,} .

2.1. PROPERTIES OF ¥4

Proposition 2.1.26: X4 = Uycc(a) Hx where C(A) = {A € ZQ |Va € A, Aa = a}is
the centralizer. Furthermore, 3 4 is an open subset of S (Q).
Proof. Note that it suffices to prove that v € ¥ 4 if and only if there exists A € C' (A) for
which v, (A) > 0. Also observe the case where rk @ = 0 holds trivially as S (Q) = .
Now assume rk@ = n > 1. Consider 7 € X (Q, A); we construct an element A €
C' (A) which satisfies v, (\) > 0. By assumption, there exists A = {a1, ...,ap} C A which
generates A over ZQ),. Pick ¢ € @ such that v (¢) > 0. Such a ¢ exists as v is a non-trivial
additive character on Q). Then for all a; € A, there is an expression g toa; = Z?zl Aijaj,
or equivalently E?Zl (0i5 —q - Aij)a; = 0.
We thus can arrange these expressions into matrix notation as

aj
K az

(0ij =~ Aig)i j1 - : =0,
ag

and we set A := (6;; — ¢ - Aij)f.j:l and@ = T (ay, as, ..., a). Multiplying by A*¥—the
adjoint matrix of A—we obtain

detA-a=A"YA.a=0,

hence det A annihilates every a;. Furthermore, by the commutativity of Z@), it is easily
seen that det A annihilates all of A. One can inductively compute det A to be of the form
det A =1—¢q-pwherepy € ZQ,. As i € ZQy, it # g, det A is a non trivial element
in the annihilator ideal. Thus A := ¢ -  is a nontrivial element of C' (A). We now finally
compute that

Uy (qu) = v (q) + vi (1) > 0

asv(q) >0and p = > n, -r withr € Q, and v, () > inf{v (r) |7 € supp ()} >0
by definition of @Q,.

Now suppose that v : () — R such that there exists A € C' (A) with v, (A) > 0. Then
as R is an Archimedean group, there exists m > 0 for any nonzero p € Z() such that
muy (A) > —u, (). Thus v, (UA™) = v, (u) + mo, (A) > 0 and pA™ € ZQ,,. Suppose
a € A. then pa = pA\"a € ZQya. Therefore ZQa = ZQ,a. Given a finite generating
set A C A, we conclude that ZQA = ZQ, A, hence A is a finite generating set of A over
ZQ,. Hence v € ¥ 4 and the proposition follows. >

Proposition 2.1.27:

1. ¥(Q,A) = Y70/ am(a), e g = X (Q,ZQ/ Ann (A))



2. Let A’>">A —" A" be an exact sequence of Z@Q-modules. Then

2(Q,4) =3(Q,A)Nx(Q,A").

Proof.

1. It suffices to show that C' (A) = C (ZQ/ Ann (A)) by proposition 26. In the proof,
we will use the identity C' (M) = Ann (M) + 1 for all @-modules M.

Let A € C(A). Then A — 1 € Ann (A), hence for all u € ZQ we have (A — 1) u €
Ann (A). Therefore (A —1)p = A—1g = 0 in ZQ/ Ann (A), from which we
conclude A — 1 € Ann (ZQ/ Ann (A4)) = C(ZQ/Ann(A)) — 1 and hence, A €
C(ZQ/ Ann (A)).

Now suppose A € C (ZQ/ Ann (A)). Then AT = T from which we conclude A\ — 1 €
Ann (A) = C (A) — 1; hence A € C (A) as desired.

2. Let v € ¥ 4. By definition there exists a finite subset A of A which generates A over
ZQ,,. As A projects onto A” via 7, the set 1A = {7 (a) | a € A} clearly generates
A" over Z@Q,, hence v € X 4.

We observe that C' (A) C C (A’). Therefore by the above theorem, it follows directly
that ¥4 C X 4. This paragraph and the previous one have established that ¥ 4 C
a0

Now let v € ¥ 4» N X 4. There then exist finite sets A’ C A’ and A" C A” which
generate A" and A" respectively over ZQ,. Let s : A” — A be a function which
satisflesidg = m o s. Then the set A = {v(a’) |a’ € A’} U{s(a") |a" € A"} can
be easily shown to generate A over Z(Q),, hence v € ¥ 4 and the result follows.

2.2. COMPUTATIONS OF Y4

Example 2.2.28: Consider the case when Q = Z = (q), A = ®;ezZa’, and ¢ - > n;a’ =
S ngattl,

0 —— ®iczla; —> Dijcplia; XL ——=7 — 1

This is specifically the case of the wreath product G = Z ! Z. The wreath product itself
is a very useful and interesting construction in group theory. In fact, the category of groups
with the wreath product has the structure of a non-commutative monoid!

We now show that 4 = (). We begin by fixing # : Q — R to be § (q’) = 7. Observe
that S (Q) = {v1,v_1} where v; (ql) =¢and v_1 (q’) = —1.

Suppose A = {ayq, ..., ay } is a finite set of A. We show that A is not a generating set of
A over Z(), and ZQ) 1 (we abuse notation here). For each ¢, we have a; = ) ; 0j a’ where
only finitely many «a;; # 0. The set {j | a;; # 0} is finite and thus posesses a maximum
and minimum; denote them as M and m respectively. For any A € ZQ1, we have A - a; €
@lZ”LZal; hence a™ ! ¢ (a1,...,ax)z0,. For X € ZQ_1 we similarly have \ - o; €
®i<mZa;; thus A is not a generating set over Z(Q)_.



More generally, for any Z()-module structure on A which makes A a finitely generated
Z@Q-module, we have X4 = ().

Let Q = (q) 2 Z and A = ®;ezZa;, ie. the free Z-module on {a; |i € Z}. Suppose
there is a (Q-module structure on A which makes A a finitely generated (J-module, and
furthermore, suppose A is also a tame (J-module. That is, A is finitely generated over ()1 =
{¢"|n >0} or Q-1 = {g~™|n > 0}. Without loss of generality, assume that A is finitely
generated over (). For if it were finitely generated over () _1, we could just consider the
action of Q = (r) on Aby 7 -a = q~! - a. This new action then finitely generates A over
Q1.

Without loss of generality, we may assume that A4 = {ai 1< < k;} is a finite gen-
erating set of A over Q1. For if {aq,...;} generates A finitely over @, then so does
U supp ().

Then Q1A = {¢"a;, |[n > 0,1 < j < k} generates A as an Abelian group. This set
is not necessarily linearly independent over Z. We now construct a Z-linearly independent
subset of Q1.4 which we denote as Q .. Begin with ', := A. Given 2!, we first construct
Vin,0 = 0 and define

Vo— {V,w-l U {q”ai].} ifQr1u Vij—1U {q”ai].} is linearly independent over Z

J= _
Vg =Vaj-1 otherwise.

then Q7 = Q! UV, . It is not the case that (2.)z = A. However, A/(Q.) is a torsion
Abelian group. This follows as ¢"a;, ¢ . implies all consecutive powers q”+zaij ¢ Q..
We see this as for ¢"7 ¢ Q_ implies there is a non-trivial equation relating an integer
multiple of ¢"a;; to the elements in Q=1 UV, j_1. Multiplying this equation by ¢ and
perhaps some integer yields a non-trivial equation realating some integer multiple of ¢"a;;,
to the elements in Q% U V11 ;1.

There must exist some ¢ for which {¢"a;, |[n > 0} C .. To see this, we work over Q.
The set Q1.4 generates ®Qa,. Furthermore, our construction of & . yields a basis for ®Qa;.
As ®Qa; is infinite dimensional, the set & , must be infinite.

From this realization, there are at most k¥ — 1 independent equations obtained between
the elements of (Q1.A. Now for all 1 < j < n there are integers m; such that qu_laij
is a Z-linear combination in terms of & .. Multiplying each one of these expressions by ¢
and possibly some integer gives us k linear relations among the elements of .. Define

j/ =inf{r|q"a;, ¢ L.}. For example

j/
mq~'a;, = Z Z rjq" @i (1)

r=0 j
j/

ma;, = Z Z ,Urjqr+1a1lj- (2

r=0 j

There are at most k£ — 1 terms in the right-hand side of this equation which are not in 2 ,.
These are those terms frjr I Haij. After multiplying equation 2 by some integer, we can
reduce every term ji,;¢’ +1aij into terms of & .. Note that in 2, the “degree 0” terms, i.e.
terms of the form cqoaij, ¢ € Z, come from reducing the terms ,urj/qj /+1aij. However, as



there are at most k — 1 equations used in each equation to reduce it into terms of & , at least
one of the obtained equations has to be non-trivial. This follows as one of ma;; is not in the
Abelian group generated by the k — 1 degree O parts of the relations used. There is therefore
a non-trivial linear relationship among the elements of  , which is a contradiction.
Example 2.2.29: Consider the case where Q = Z = (¢), A = Z[1/2] and ¢ - = = 2z
(note that ¢~ -z = %.r). With the description of S(Q) as in the previous example, we
will show ¥4 = {v_1}. It is clear that {1} generates A over ZQ_; asq~ " -1 = 2%,
(2" |n < 0)z = A. An argument similar to the one in the previous example shows that no
finite set A4 C A generates A over ZQ);.

In general, any @-module structure on A is tame (see definition 39). First off, ¢ - — :

and

A — A must be an automorphism of A. This automorphism is Z-linear, but by induction
on n, we see that ¢- is Z[1/2]-linear from the equation 2(¢q - 27"~!) = ¢ - 27™. Hence
q- € GLy (Z[1/2]),i.e. ¢-1 = 427 for some k € Z. An entirely analogous computation to
that in the preceeding paragraph shows that either ¥4 = {v;} or ¥4 = {v_;}. Tameness
will play an important role in our proof of the main result.

From this computation, we note that ¥ 4 is never all of S (Q). This is due entirely to the
fact that A is not a finitely generated Abelian group; see theorem 36 for more details.

Example 2.2.30: Consider the case where Q = Z = (¢), A = Z[1/2] ® Z [1/2], and the
ZQ-module structure on A is given by

()= ) ()

It is then not too difficult to see that ¥4 = {v;} with the help of the computations made in
the previous example and by the linearity of the action.

This choice of () and A exhibit an interesting property that the previous two examples
do not. This property is that there exist Z)-module structures on A for which A is tame
and for which A is not tame. We will see the importance of this when we get to the main
theorem of this paper.

With @ and A as above, the ZQ-module structure on A given by

. X1 . 2 0 . T
T\ 2 )70 1/2 s
makes A a non-tame ZQ-module. That is, ¥ 4 = §.

3. GEOMETRIC LEMMA

The common tool in the proofs to come is the geometric lemma which we prove in this
section.

Definition 3.0.31: Let X be a set. Define fX := {A C X : |A] < oo}

Throughout this section, F € ffR™ and L € F. We also define the open ball of radius p
centered at x by B (p;x) := {y € R" | [y — z| < p}. If 2 = 0, we simply write B,,.
Definition 3.0.32: An element x € R" can be taken from B, by F if there exists L € F
such that x + L C B, orif x € B,,. If there exists L € F suchthat x + L C B,, wesay
can be properly taken from B, by F with respect to L.



Definition 3.0.33: The set of points # € R"™ which can be taken from B, by F will be
denoted by T' (F, p).
As a preliminary observation, we see that a point z € R™ can be properly taken from

B, by F with respect to L if and only if 2 € (), ., B (—y; p). Thus we have

T(F.p)=J | [ B(~yip) | UB,.

LeF \yeL

Lemma 3.0.34: Suppose F € ffR™ such that for any € R™ \ {0} there exits L € F such
that (z,y) > Oforally € L. Then there exists pg > 0and a functione : {p|p > po} — RT
such that for all p > pg we have B, .,y € T (F,p). Furthermore, ¢ is an increasing
function.

The casual reader can easily skip the details of the proof. The essential geometric fact we
are utilizing (in imprecise language) is that spheres flatten out as their radius gets larger.
Proof. Define f : S"~! — Rby f (u) := maxper minger, {(u,y) |y € L € F}. One
can show that f is continuous utilizing the continuity of (—, —) without too much difficulty.
By the compactness of S™ ! there existsv € 5™~ ! suchthat f (v) = inf { f (v) [u € S"7'} >
0. Set C' := f (v). Also define D := maxrcr maxycr, {|y||y € L € F} > 0.

Set pg = % ande (p) = C — (g—;). By our choice of C, for all z € R™ \ {0} there

exists L, € F such that miny¢y, {(ﬁ, Y|y € Lw} > C. We see this as

] —x —x
s (o} =7 () 2©

Thus for |z| > po and y € L, we have

z+yl = |2 + 202/ |2l y)|x] + [y
< |z|? = 2Cz| + D?
< faf?

where the last inequality is justified by

—2C|z|+ D?* < —2Cpo+ D?
= —-D?*+D?=0.
Moreover,
e e
[z +y| + |z]
- —2C|z| + D?
- 2|x|

= —e(l=))

hence |z + y| < || — € (|z|). Thus for all z such that pg < p < |z| < p + € (p) we have
lz+y| <l|z|—e(|z]) < p+e(p) —e(|z|) < p;thatis,z +y € B, forall y € L,, hence
v €T (F,p)and B,yc,y €T (F,p). >



Example 3.0.35: To make this concrete, we look at the example when n = 2 and F =
@0}, {0,1)},{(-1,0)},{(0,-1)}}. We would like to demonstrate what restricts
the size of 7 in the equation B, € B, C T (F,p). It is clear that the points (z,y) €
OT (F, p) which are closest to B, (for p > 1/1/2) are those points which satisfy z = y
or & = —y, and the points which are furthest away are those of the form (z,0) or (0,y).
We concentrate our attention to the first quadrant as the others follow by symmetry. We

compute the point (z,z) € 9T (F, p) to be given by ( ERvE 1+2p2 ERvE 1+2p )Whlchhas

length - (1+\/—1+2p) Forp > 1/v/2wehave p < = (1+\/—1+2p) \/5—|—p.
Thus the blggest ball we can fit into T (F, p) is going to be determined by the value of
% (14 +/—1+ 2p?) which is an increasing function for p > 1/1/2. Thus the “flattening”
is seen as p gets larger and the distance between the cusps at the points (x, +=2) and the ball
B, increases. We note that this distance is bounded by 1//2.

Figure 1: The blue circle is the boundary of the ball By which we are taking points from.
The black circle is the boundary of the largest ball which fits in 7" (F, 1), namely B, /VE

4. CHARACTERIZATION OF (J-MODULES A WITH X4 = S Q)

We choose to prove the following theorem for a few reasons: first off, it gives a useful
computation of ¥ 4 and builds our intuition about what the Z-invariant is describing; chiefly,
the proof illustrates the way we will be applying the Geometric Lemma (lemma 34) for our
major result to come. We have indeed built up all the necessary concepts needed for this
section, so we go right to the statement of the theorem and its proof.

Theorem 4.0.36: Let () be a finitely generated Abelian group of free rank n; let A be a
finitely generated @Q-module. Then ¥4 = S (Q) if and only if A is a finitely generated
Abelian group.

Proof. We begin by fixing a homomorphism 6 : Q —=Z"———=R", or for sake of
convenience, the explicit one described above. We now define X, := 6~ (B,). The sets
X, satisfy the two following properties:

i) forp <7, X, C X5

) Upo:Q-
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Suppose now that ¥4 = S (Q). Then by Propositions 21, 24 and 26, we have S"~! =
S(Q) = Uxec(a) Hx. hence {H, | A € C (A)} is an open cover of the compact topological
space S n—1 There thus exists a finite subcover, and hence a finite subset A C C (A) such
that { H, |\ € A} covers S"~ 1.

Define F := {{6(q) |g € supp(A\)} | A € A} € ffR™. As valuations v € S (Q) can
be interpreted as inner products, i.e. Ju € S"~! such that v (¢) = (u, 0 (q)), it follows by
the definition of ¥ 4 and our assumption that F satisfies the hypothesis of the Geometric
Lemma. Thus there exists a pg > 0 and an increasing function ¢ : {p|p > po} — R™ such
that B, .(,) can be taken from B,,.

Interpreting this result in ), we obtain for ¢ € X, .(,) an element A € A such that
0(q)+0(r) € B,forallr € supp (). As 6 (q) + 6 (r) =6 (qr) € B,, we have gr € X,.
Thus gA = 3, cquppn) o (a7) € ZX,.

Now consider a € Aand ¢ € X, (). Theng-a = q-(A-a) = g\-a € X,a.
However, as ¢-a € X, .(,) is a general element, we conclude that ZX ,, . (,ya C ZX ,a for
alla € A. Theinclusion ZX,a C ZX () a is clear by property i.) of the sets X,. We have
thus shown ZX . (,ya = ZX,a for all a € A. Furthermore, for any c € [p, p + £ (p)], we
have ZX .a = ZX ya.

Fix some p’ > pg and constant ¢ which satisfies 0 < ¢ < & (p’). Thus by induction, one
can establish Z X, a = ZX ;| n.a for all n € N. It thus follows by property ii.) of the sets
X, that 2X,0 = 7 (U, X ) a = ZQa.

Suppose now that A is a finite basis for A as a ()-module. Then A = ZQA = ZX y A.
However, X,y A = {q-a|q € X,/,a € A} is afinite set which generates A as a Z-module.
That is, A is a finitely generated Abelian group.

The implication that A being a finitely generated Abelian group impliesthat ¥4 = S (Q)
is immediate by the initial definition of X 4. Thus the theorem has been proven. >

5. TAME Q-MODULES

In the following sections, all ()-modules A will be right ()-modules.

Definition 5.0.37: Given a ()-module A, we can define an associated left Q-module A* via
the multiplication ¢ - @ := a - ¢~ .
Proposition 5.0.38: X4« = —X4

Proof. Suppose v € ¥4+ and let A = {aq, ...ax } be a basis for A* over Q,,. Thus for any
a € A* there exist \; € ZQ,, such that

k
a = Z ai>\i
i=1
kL
=D > N (aiaig)
i=1 j=1

k1
= X3 '

i=1 j=1

11



As qigl € @Q_, for all 7, j, we conclude that 4 generates A as a ()_,-modules; hence

Y4+ € —X 4. The other inclusion follows analogously, hence the proposition. >

Definition 5.0.39: A ()-module A is tame if it is finitely generated over ZQ and X 4 UY 4~ =
S (Q), or equivalently ¥4 U =34 = S(Q).

Proposition 5.0.40:

1. If the Q-module A is tame, then so are its all submodules of A.
2. Homomorphic images of tame modules are tame.

3. Finite direct products of a tame module A are tame.

Proof.
1. Let A’ C A, or in other words, A’>—=A. By Proposition 27, part 2, we have
YA4CY4. . Thus S (Q) =XaU—-X4 C Xy U—34, hence A’ is tame.

2. Follows as in part 1. of this proof by Proposition 27, part 2.

3. As C'(A) C C(A™), we have ¥4 C Y 4n; hence the proposition follows by the
description of ¥ in Proposition 26.

>

Proposition 5.0.41: Let ¢ : Q — @ be a homomorphism with |coker ¢| < oo and let A
be a Q-module. Let A be the Q-module obtained by restricting scalars to ¢ (Q) That is, for
GeQanda € A, define G- a:= ¢ (q) - a. Any such ¢ induces a map ¢* : S (Q) — S(Q)
given by ¢* (v) := v o ¢. We then have:

L ¢* (2(Q,A)) =2(Q,A)":
a) ¢" (2(Q,4)°) € 2(Q, 4)",
b) 2(Q, A)° C im¢*,
¢) (617 (2(Q,A)°) € =(Q,A)

2. Ais tame if and only if A is tame.

Proof.

1. a.) Observe that A is finitely generated over Q if and only if A is finitely generated
over (;5(@) Suppose v € X (Q, A)°. Then A is not finitely generated over Q..
Since ¢(Qvo¢) = gb(@) NQy C Qu, Ais not finitely generated over va.

b.) Letv € E(Q,A)C. Define v : d)(@) — Rviavo ¢ = 0. The map v is well
defined, for it is well defined at 0. That is, choose any g € ker (¢). We then have
g-a=¢(q)-a=1-a=aandthusq, ¢t € C'(;l) Since ¥ € E(Q,[l)c,we
have ¥ (C(fl)) < 0. We thus conclude ¥ (¢) = 0, and hence, T is well defined. As
divisibility is equivalent to injectivity in Ab, we can extend ¥ to a homomorphism
v defined on all of @) as seen in the diagram below. Hence v o ¢ = v as desired.

12
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Q = ?(Q) 1
dls(q)

Plainly speaking, there are two scenarios to consider:

i. forz e Q\¢(Q) there exists g € Qandn € Z\ {0} suchthat n-x = ¢ (§).
Then define v (z) := 2 which is possible as R is divisible.

n

iil. €@\ gb(@) does not satisfy the hypothesis of the previous case. Then z is
necessarily of finite order, in which case define v (x) := 0;

c.) We now prove the contrapositive of c.), namely, if v € X (Q, A), then ¢* (v) €
X (Q, A). We thus assume that there is a finite set .4 which generates A over @,
and it remains to show that A is finitely generated over @), N gb(Q)

By our assumption that coker ¢ is finite, we can choose a representative system
Ly -5 Gm of cokerp = Q/(j)(@) Furthermore, we may choose ¢1, ..., ¢m such
that v (¢;) < 0. For if the free rank of Q is 0, then v (¢) = 0 for all ¢ € Q. If the
free rank of () is nonzero, there is then an element of infinite order in im¢ N @
which satisfies v (¢) < 0. Hence if v(g;) > 0, we can replace it with some
q"q; as v (¢™gq;) = mv (q) + v (¢;) < 0 holds for sufficiently large m € N by
the Archimedian property. Thus our assumption about the representative system
Ly -5 Gm 18 justified.

We now consider some a € A givenby a = )" \;a; where \; = > A;;7;; where
Tij € Qu, Nij € Z. Then as r;; = qg,, ¢ (s45) for all ij, we have

a= Z i@
= Z (Z /\z‘sz‘j) a;
=>. (Z Aij (Tijaz'))
=D (Z Xij® (sif) qe, ai)

and 0 < v ({;;) = v (qe,) + v (¢ (si;)). From assumption that v (gz,,) < 0
we conclude 0 < —v (gr,,) < v (¢ (si;)). Therefore {g; - a;} forms a basis over
Q,N ¢(Q) and is finite.

2. Observe A is tame if and only if ¥ (Q, 4)° C —X (Q, A).
Suppose A is tame. Then

2(Q,4) =" (2(Q,4)) C " (-2(Q,4)) € -2(Q, 4)

yields ¥ (Q, fl) ‘c-x (Q, fi) as desired. The rightmost inequality holds as part 1 of
the proof works for both left and right modules and we have —X (@, A) = X (Q, A*).
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Now suppose A is tame. Then just as above, we have

2(@,4) = (697 (2(Q.A)7) € ()7 (-2(@,4)) € -2 (@, 4)

with which the tameness of A is proven.

6. FINITELY PRESENTED METABELIAN GROUPS

Theorem 6.0.42: An extension of ) by A is finitely presented if and only if A is a tame
@-module.

The first thing we note from this theorem is that it says the finite presentability of a
metabelian group depends only on what the ()-module is, and not on the element it deter-
mines in £ (Q, A) = H? (Q, A).

To prove this theorem, we establish a few lemmas first.

Lemma 6.0.43: Let Q1 be a complementary subgroup of T'(Q), i.e. so that Q1 = Z",
and let G; := 7! (Q;). Observe that there is a (J; module structure on A via the map
Q1 — Q by restriction of scalars. Then

i. A istame over () if and only if A is tame over Q1;

ii. G is finitely presented if and only if GG; is finitely presented.

Proof.

i. Observe that the canonical injection ¢ : Q1 >—() satisfies the conditions of Propo-
sition 41. Thus our first claim is proven.

ii. Note that G/G; = Q/Q1 = T (Q) which is a finite group. That is, G is a subgroup
of finite index in G. It is a standard result that a subgroup of finite index is finitely
presented if and only if the group is finitely presented, and thus, the reduction step
follows. A proof can be found in [Lyndon, p 103]

6.1. X4 U—-X4 = S(Q) FOR FINITELY PRESENTED METABELIAN GROUPS

In this subsection, we show that a finitely presented metabelian group impose a tame
(-module structure on A. The proof of this relies on topological properties of the Cayley
complex of G.

Definition 6.1.44: Let G = (X |fR) be a presentation of the group G. Denote the Cayley
complex by I' = ' (%, 9). The Cayley complex we are interested in has 0-cells given by
G, 1-cells given by G x X and 2-cells given by G' x fR. It is convenient to introduce the
notation of inverse 1-cells (gm, xil) which is the inverse path of (g, ). That is, we consider
the disjoint union of cells indexed by these sets, then take the quotient space given by the
following rules of gluing:

1. A l-cell (g,x) € G x X begins at g and ends at gz; in other words, the boundary of
a l-cell (g, z) is given by 9 (g,x) = gz — x.
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2. A2-cell (g,7) € G x Rwithr = y1y2 - - ys, y; € X U X! has boundary
9(g,7) = (9:y1) (9y1,¥2) - (9y1y2** Ys—1,¥s) -

We note that “redundant faces” are not deleted, and the cells are unoriented. See [Lyndon,
I11.4] for more details on this construction.

Proposition 6.1.45: We establish some basic facts the Cayley complex L ofa group G =
(X |R). We denote by I'" the r-skeleton of T".

1. The Cayley complex T is connected and simply connected.

2. GactsonT by left multiplication. For g € G the explicit description of the action is
that for h € I'?, g- h = gh; for (h,z) € 'Y, g- (h,z) = (gh, z); and for (h,r) € I'?,
g- (h,r) = (gh, 7).

3. T is the universal cover for G \ I = f/ ~, i.e. the quotient space of ' by G. The
space G \ T has fundamental group isomorphic to G.

4 If N <G, we see by covering space theory that N \ I" has fundamental group N, and
the action of G on I induces an action of G/N on N \ T".

Proof. These are routine properties of the Cayley complex which can be found in [Lyndon,
IM1.2,111.3,ITL 4]. >

Theorem 6.1.46: If GG is a finitely presented metabelian group, then A is a tame ()-module.

Proof. We assume that G is finitely presented and that () = Z". We construct a finite
presentation which is well suited for our investigation. Pick the generators X = 7 U M
where T = {t1, ..., t,, } are such that {¢; := 7 (¢;) |1 < < n} is a basis for ). Now pick
a finite set M which generates A as a normal subgroup of G and is disjoint from 7. Note
that in this setting, M generating A as a normal subgroup in G is equivalent to M being a
generating set of A as a -module. The set X is then necessarily a generating set of G, and
there exists a finite set R of relations for this generating set which gives a presentation of
G = (X|R).

We thus consider the Cayley complex of G with respect to the presentation G = (X | R)
which we denote by I' := T' (X;9R). Define I := A\ I. The complex I has fundamental
group 71 (I') = A. The fundamental group 71 (7y) is equipped with a -module structure
given by the action of () on I mentioned in proposition 45, and agrees with the action of
Q@ on A. The action may be explicitly described as follows: let ¢ = = (¢J* ---¢5) and
v € m (I'); consider the path

= (1,t1) (qu,t1) - (@ ta) - - (@5 qor ) s

then q-v = p (qy) p~ 1. That is, in the fundamental groupoid of ', which we denote IT (T"),
the action of @ on 71 (T') is given by conjugating 71 (T', ¢) by ¢. In terms of A, the Q-action
on 7 (T') coincides with the Q-module structure on A.

We now seek to better understand the 1-complex of I'. Observe that I'! decomposes as
' = QU A where Q := (Q,Q x M) and A := (Q,Q x T). The picture is that A is an
n-dimensional grid and (2 is the union of a bouquet? of card (M) circles at each vertex.

*i.e. one point union
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With these details behind us, we can finally get to the main idea of the proof. Consider
a non-trivial additive character v : Q — R, and fix § : Q — Z"™ — R". It is perhaps
most intuitively clear if we take 6 (¢;)) = e;. Then associate (with an abuse of notation
v = (v1,...,0,)) v(q) = (v,0(q)). Define ', to be the subcomplex generated by the
vertices 0y, i.e. an r-cell is in I';, if and only if its boundary lies entirely in I',,. Likewise
define A, =T, NAandQ, =T, N Q.

Where we are headed: Our main goal is to apply Van Kampen'’s theorem for
any non-trivial additive character v and suitably chosen ¢ € @, to I' with
subspaces I';, and ¢I'_,. The intuitive idea then is that the only way to write
the Abelian group A as an amalgamated product is if it is in a trivial way.
From this, we will get a Q-module surjection of 71 (I'¢, ) onto A for some € =
+1. Applying the Hurewicz transformation gives us a surjection of Hy (I'¢,)
which is easier to work with. For any v, we can show that H; (I",) is a finitely
generated ),-module without too much difficulty. It therefore follows that A
is either a finitely generated (), module or a finitely generated ()_,-module.
Hence for any v € S (Q), either v € ¥4 or —v € X 4.

We now fill in the details of the proof.

Lemma 6.1.47: Consider a non-trivial additive character v and suppose 6 is chosen as above.
For any ¢ € @ that satisfies v(q) > 2v/2||v]|, the space T, N ¢T'_,, is path connected. A
stronger result in [Bieri, § 4.7], but we content ourselves with this version.

Proof.  We are concerned with A, N gA_, in this proof as connectivity is just a ques-
tion about the 1-skeleton and the loops at a point are irrelevant. Throughout the proof, we
identify a point p = [] ¢?* with (p1, ..., p,) € Z™.

As v(p) = (v, p), we can extend v to all of R™ by v(x) = (v, z). Then the intersection
I, N ¢I'_, lies within the region L = {x € R™ |0 < v(z) < wv(q)}. In other words, we
are looking at the piece of R™ between the hyperplanes P, = {z| (v, z) = > v;x; = 0}
and P; + 0(q) which are evidently parallel to one another. One can then verify that the
distance between these two hyperplanes is v(q)/||v|]| > 2v/2. Because of this, any point
p € Q, N qQ_, has at least n? — n “neighboring” points also in Q,, N ¢Q_,.

Consider p = (p1, ..., pn) € Q» N¢Q—,. By a neighboring point, we mean those points
pte;+ejandp=te;foralll <i < j < nandsigns. Suppose p+e;,p—e; ¢ Q,NgQ—,
asp € Q, NgQ_, the points p + e; lie in different connected components of R™ \ L. Thus
2 = ||p+e;—(p—e;)|| > 2v/2 which is absurd. Hence at least one of pte; € Q,NgQ_,,. A
similar realization shows us that if pte; +e; ¢ Q,NgQ_,, then —(pte;te;) € QuNgQ—,.

Letp € Q,NgQ_, and 1 < k < n; define A i, to be the 1-subcomplex of A, NgA_,,
determined by the O-cells {¢}* - - - ¢}, - - - &~ | r € Z}NA,NgA_,,. Forany p € Q,NgQ_,
and any 1 < k < n, the complexes A, 1, are evidently path connected.

We work under the added condition that v(g;) > 0 for all i. We show for 1 < ¢ < n and
any point p € @, N gQ)—,, there exists a point p’ € A, ; and a point p” € A, ; such that
P'q¢" € Q,NgQ_,andp"q ¢ € Q, N qQ_,. Since v(g;) > 0 for all i, every A%l consists
of finitely many points. We thus define py, € Ag,l to be the point such that prq; ' ¢ Ao,l

and pp € A2,1 such that prq1 & Ap 1.
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The proof follows by cases? Let e = =£1 be a sign. Suppose at every point r € A, ;
that r¢f ¢ Q, N ¢Q_,. Then it is the case that both 0 < v(pL) + ev; — v1 < v(q) and
0 < wv(pgr)+ev; +v1 < v(q). One then shows that this implies either pr, —e; € Q,NgQ —,
orpr+e1 € Q,NqQ_, depending on € and the sign of v; and v;. We show the case when
e =1,v1,v; > 0. This then implies 0 < v(pr) < v(pr) +v1 < v(pr) + v; + v1 < v(q),
hence pr + e1 € Q, N qQ_, which is a contradiction. See figure 2.

[ ] { ] ® - @ o L ]
€;
pL Pr
[} L ] L ] [ 2 O
[} i} 0 ¢ ) {t |
—
€1

Figure 2: The boxes represent points which are not in ¢),, N ()_,, under the assumption that
r—e; ¢ Qy,NgQ_, forallr € Ay ;. The circular dots are points that we can determine
arein Q, N Q_,.

Assume that v(g;) > 0 for all i. We then show that for any point p € Q, N ¢Q_,,
there is a path from (0, ...,0) € Q, N ¢Q_, into A, 1 for p contained in A, N gA_,, and
hence to p. We prove this by induction on n. If n = 1, then Ay = A, N gA_, which
we know is path connected. Now supposing there is a path from 0 to A, ., .0),1, by
induction on |p,,| there is a path from A, . 0)1t0 A, . p. 1 pn),1 and hence to
p. The case |p,| = 1 was established in the previous paragraphs. Thus supposing there
is a path from A, 500y, i0t0 A een(pa)), 1, there is a point pn, ) €
Ay, pn1,pm—sgn(pn)),1 for which pene, 4+ sgn(pr) € Q, N qQ —,. Hence the result for
when v(g;) > 0 for all 4.

Now if v(¢;) = 0 for some 4, then p + Ze;; C Q, N gQ—,. Thus given a point p =
(p1, ..., Pn), we need only be concerned finding a path from 0 to

Z pi€q

i
v(qi)#0
which is then contained in some lower dimensional subspace, on which, v satisfies the con-
ditions of our special case. Thus the result is proven.
>

Lemma 6.1.48: Consider a non-trivial additive character v and suppose 6 is chosen as above.
Set £ = max {length(r) | € R} U {1}. For any ¢q € @ that satisfies v(q) > £||v
r,uel_, =T.

Proof. Like in the previous lemma, we get a region L bounded by 2 parallel hyperplanes
which are separated by a distance of v(q)/||v|| > £ > 1. It is evident that Q, U¢Q_, = Q.
Now consider a path +y in the 1-skeleton given by a word w of length length(w) < £. Then if
w ever traverses a point a such that a ¢ @, or a ¢ q@Q _,, the whole path must be contained

, we have

°[ anticipate that one can prove this in a more satisfying way. It seems like it should follow that if one cannot
move in the direction g5, then vy = 0 which contradicts our assumptions.
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in ¢Q_,, or Q, respectively by our choice of ¢. Thus I'* C ', U qI'_,,. We furthermore
have all 2-cells (¢,7) in ', U gI"_,, as length(9(g,r)) < ¢ by assumption. >

We wish to apply Van Kampen’s theorem to I',, ¢I'_,,. We record the statement of Van
Kampen’s theorem as follows:

Theorem 6.1.49: Let X be a path connected space, and suppose 4 = {U,} is an open
cover of path connected sets such that finite intersections are still path connected and are
in 4. Consider i as a category with morphisms given by inclusions of open sets. Then
X = colimil, and furthermore 71 (X) = 7 (colim ) = colim(mq (Y)). In the case with
two sets Uq, Ug covering X with intersection Uy we have 71 (X) = G4, *a, , G (Where
w1 (Uy) = Gy).

The subspaces I', and ¢gI"_,, are not open, but they are deformation retracts of slightly
larger open subspaces. Thus we have a push-out diagram

Ly

m(Ty Ngl'—,) —— 1 (Ty)

m1 (gl —y) — " s mT=A

In particular, this says A is an amalgamated product. However, since A is Abelian, the
only way this can happen is if the amalgamated product is trivial, i.e. one of the factors
m1(T'y) or w1 (¢I'—, ) maps surjectively onto A. We prove this using the normal form theo-
rem found in [Lyndon, IV.2, p. 187].

Theorem 6.1.50: Consider the pushout diagram

é1

H——K

A

LHL*HK

We call a sequence ¢, ...,cs, s > 0 of elements of L *x K reduced if: each c¢; is in either
L or K; for all 4, ¢; and ¢; 1 do not belong to the same factor; no ¢; belongs to im ¢ or
im¢o; if s =1, ¢; # 1. Then if ¢y, ..., ¢4 is a reduced sequence then cico - - - ¢s # 1 in the
amalgamated product L g K. >

Thus in our case, if neither factor was killed entirely, there would exist a € 1 (I",) and
b € m1(qT'—,) which are not in the subgroup we are amalgamating over. Then a, b,a~1, b1
is a reduced sequence; hence aba~'b~! # 1 in A which contradicts A being Abelian. Thus
either ¢, : m1 () = Aor e, : m(¢T—y) = A

In fact, for any additive character there is a sign € = +1 for which ¢, : 7 (T,) - A
is surjective. Suppose ¢y : 1 (qT'—,) — A. Then as m(T'—,,1) = m1(¢qT -y, q) = q -
m1(T—,, 1) where the last equality follows by conjugation by the induced action of @ on
the fundamental groupoid TI(T"). As the fundamental group does not depend on the choice
of a basepoint, we have a diagram
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Ly

1 (qF—1;7 1) A

|

1 (qr—va Q)

2o

ﬂ'l(F_U, 1)

which is not necessarily commutative. Since ¢, (qI'—,, 1) is conjugate to ¢, 71 (I'—,, 1) in
m1([, 1) 2 A, we conclude that ¢, : 71 (T'—y, 1) = w1 (T).

Now because of the Hurewicz natural transformation  : 73 — H; we get a commuta-
tive diagram:

Hl (Fev) e

Hy (D)= A

that forces Hit = i, to be surjective. The homomorphism H;¢ is also easily seen to be
Qev-linear. All we need to do now is prove the following lemma.

Lemma 6.1.51: For any non-trivial additive character v, Hy (T',) is a finitely generated Q-
module.

We show that Z;(T',), i.e. the cycles in I, is finitely generated as a (),,-module. It is
clear that Z1(T',) = Z1(A,) ® Z1(S2). The set {(1,m) | m € M} is finite and generates

Z1(2y) = C1 (L) over Q.
As Hi(A) =0, the set

{0(L, [ti, t]) |1 < < j <n} ={(L,ti) + (gistj) = (g5, 1) — (L, t;) |1 <@ < j <n}

generates Z; (A) over (). We may assume v(g;) > 0 for all ¢, hence v, ; € Z1(A,). We
show that they indeed generate Z1 (A, ) over Q,. Call V = (v; j)q, -

Consider a cycle v € Z7(A,). It has the form Y m, ;(q,t;) where the sum is over all
q € @, and satisfies Y~ my ;0(q,t;) = 0. From this, we deduce that

> mq; ((agj.t1) — (g.t1)) = 0.
Thus
0y =7 =) ma; (g0, t;) = (a,15))
= _mg; ((aa,t5) = (aq1,t1) = (a:15) + (¢,11))
=> mgiq((1t1) + (a1, 1) — (q1,12) — (1,£5))
= qu,qu,j,

i>1
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hence ¢;y—v € V C Z;(A,). Applying the above computation to q;y—7 yields g3y —~ €
Z1(A,). Inductively we see that for all m € N the chain ¢f"y — v € V C Z1(A,).
Alternatively, v = > \; jvi,; Where \; ; € ZQ. As there must exist ¢ such that v(g;) > 0,
there is no loss of generality assuming v(q;) > 0. Then as R is an Archimedean group, there
exists m such that v(¢{") = mv(q1) > —v(\; ;) forall 1 <i < j <n,ie v(g]"Aij) > 0.
Hence ¢* >~ \i jvi; € V, and ¢i"y — v € V from which we conclude v € V. Thus
V = Z1(A,) is a finitely generated ZQ,-module. With this, the theorem is proven. >

Remark 6.1.52: It is worth noting that the general idea of this proof can be used to show that
a metabelian group is F'P; if and only if it is finitely presented. The details of how to extend
the proof can be found in [Bieri], and the basic definitions of F'P,, can be found in [Brown,
§ VIIL5]. It has recently been shown by Mladen Bestvina and Noel Brady [Bestvina] that
this is not the case for all groups. They show that right-angled Artin groups satisfy F'P» but
are not finitely presented. For more details on this, see [Charney].

We proceed onward and complete the proof of the main theorem. We do not provide
the general proof of the remaining statement as a few computational difficulties arise which
hinder the understanding of the main idea. We thus only prove the special case when the
extension is the split extension which is formulated in the following theorem.

Theorem 6.1.53: If A is a tame (Q-module, then A x @ is finitely presented.
In order to proceed with the proof, we need to develop some notation for typography’s
sake. First off, the operation on the split extension A x @ is given by (a,q) * (b,r) =

(a +b-q71, qr) because we have switched to the right @-module A. We also denote for

1 1

general z, y in any group z¥ := y~lzy and [z,y] = 27y~ Lay.

Remark 6.1.54: We proceed under the assumption that () = Z™ because of lemma 43, and
G=AxQ=AxZ".

Definition 6.1.55:

a.) A is a finite generating set of A;

b.) 7 :={t1,...,t, } where t; = (0, e;) and {e;} is a free basis of Q = Z";
c) F:= F (7T) is the free group with generators from 7;

d) F:= {t]"t)"* .. -tmn |m; € Z} C F is the set of all ordered words in F;
e) 7: F — Q defined by ; := e;;

f) 0:Q — Z™ C R™ defined by 6 (e;) := e;;

8) o i= {s € F| [0 )] < m};

h) Rg = {[ti,t;] |1 <i<j<n)

1) Ky = {[a,b"] |u € Fpn, a,b € A};

i) Koo :={[a,b"] |u € F, a,b € A};

k) As S(Q) = X4 U =34 = Uyec(u) (HrU—H,), and 5 (Q) is compact, we may
choose A C C'(A) such that it is finite and S (Q) = U (Hx U —H) holds;

20



L) Cp := {a‘l [l.cr (a’\(a)u) lae A\ € A};
m) Gp, = (AUT |RgUCAUK);
n) Goo ' =(AUT | R UCy UK);
0) As = gpg_ (A) <G
p.) For A € A define Ly := {0 (q) |q € supp (A)} € fR™
q) F = {£Ly| X € A} € JfR™.

It is important to note that our choice in b.) is what simplifies the proof of the theorem.
In general, we can only pick an element of G which projects onto the basis elements of @),
and need to work a little harder to get things to work out.

Our choice of A has the following interpretation: for every nonzero element x € R",
there exists an element A € A such that either: for all 7 € H) we have v (x) > 0, or for all
T € Hy we have —v (z) > 0.

Observation 6.1.56:
1. A =(a"|ac AuecF)={a"|ac AucF}.

2. Ao 4G and Goo /Ao = (T | Rq), that is, G is metabelian.

Proof.  (Theorem 53) The proof of the theorem follows easily once we establish that there
exists some mgo > O such that G,,,, = G. Let us work under this assumption and defer
this result to lemma 57.

Define 9 : Gooc —>>A X% (@ to be the homomorphism defined as the identity on .4 and
T . One can easily verify that ) is a well defined homomorphism as all the images of all the
relations in G, are satisfied in A X ). Note that kerm o ) = A. Thus Goo /A = Q.
With this we conclude kery) C Ay. AsZQ = 7Z [:vl, ey Ty xl_l, e :Egl] we conclude
that Z() is Noetherian from Hilbert’s Basis Theorem. As ker ¢ is a ZQ)-submodule of the
finitely generated Z(@)-module A, we conclude that ker ¢ is finitely generated as a Q-
module because Z() is Noetherian. We thus see that a finite generating set ) of ker ) as a
(-module has normal closure in G, equal to ker ¢ as the conjugation action of () on ker ¢
agrees with the given ()-module structure on A... That is, gp; _ ()) = ker . Thus

AxQ=Goo/gpg, (V)
= (AUT | YURQUK,, UCa)

which is a finite presentation for A x Q.

Lemma 6.1.57: There exists mo < oo such that G, = Goo.

Observation 6.1.58: The following relations hold for u,v,w € G = A x Q:
L fu, vw] = [u, w] ([u, v]");

2. [uv,w] = ([u,w]") v, w];
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3. [u®,v] = [u,v“’fl}w.

Proof.  From our previous considerations, it is clear that F satisfies the conditions of the
geometric lemma. Thus there exists a pp > 0 and a function € which satisfy: B, .(,) can
be taken from B, by F for all p > po. Thus we fix mg > po and set [ := & (myg). Thus for
all m > my the ball B,,,;; can be taken from B,,, by F.

We now show that ¢ : G4y = Gy, for all m > myg from which it will follow induc-
tively that G,,, = G. Define ¢ and ¢~ to be the identity on A and 7. The map ¢~ is
clearly a homomorphism as all of the relations in G,,, are in G, ;.

In the following paragraphs, we show that ¢ is a homomorphism by showing that for all
s' € Fuyy \ F we have [a, bs,] =1in G,,.

By the Geometric Lemma, for every © € B,y \ By, there exists a A € A and a
sigh ¢ = #1 such that z + Ly C B,,. Observe further that for s € F, )\(g) # 0is
equivalent to 6(5) € Ly. Now let s’ € Fy, 4y \ Fip,. Thus we can interpret s” in R™ via
9(5’ ) and apply the Geometric Lemma. There thus exists a A € A and a sign € such that
9(5’) + &Ly C By, In other words, for each ¢ € supp (A), we have H(SA’) +¢0(q) € B,
yet as 0 is a homomorphism, we have 9(5’ qc ) € B,,. Thus if A(?) # 0, the inclusion
reduces to (;7 fs\s) € B, and thus working modulo R in F', we conclude that s's® € Fo,
mod R (this is another part where trouble arises in the general case).

In order to establish the equation [a, %] = 1 in G, we first show:

v, ife = 1then [a, (0*®)™ | = 1in G,;
2. ife = —1 then [a*(%) b5 '] = 1in G,

Proof.

. As §'s € F, we have [a,b%*] = 1in G,, as it is a relation in C,,. We compute using
the identities in Observation 58

{a, (b/\(g))ss/] _ {m () (b’\(§)1>531
- {a, (bx(g)_l)ss'} {a,b“’} (PE-1)
A

(PO ss’
_ [a’ s } ( )
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2. We likewise compute with the aid of Observation 58

{GA(g)’bs’sfl} _ |:a,b8l871i|a - {a,\(g)—17bs’s*1]

>
We now prove that the equation [a, bsl] = 1 is valid in G,,,. We break the proof into
two parts: 1. when € = 1; 2. when e = —1.

1. With e = 1, and supp (\) = {371, ..., 5¢ } we compute

0] = [ T ()" ]

i=1
t

r [a, (bms:i))“”'r(i)

0

_ 1

Il
o

Il
— e
Il

t . o
where f (i) = ] (b/\(sf))sjS and f (0) = 1. The description of f is not very
j=l41—i
important and can be ignored as it is clear that some such function exists.

2. With e = —1, and supp (\) = {57, ..., 5;} we compute

s E AN
a.0"] [( ) ,b]
[GRG

[ N bs,s,l]wm

-

|
AE“

@
Il
-

I
\z“

&
Il
-

15:9(9)

| Il

_ e
I ::]w
X

t .
where g (i) = ] (aA(Sj))SJ, Again, the description of g is not important.
j=i+1
Thus all of the relations in G,,,; are satisfied in G,,, from which it follows that ¢ is a
homomorphism, and thus an isomorphism. A simple induction argument proves the claim

that Gy = Goo. b
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