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0. I

In group theory, it is a fundamental question to determine what information about a
group is necessary and sufficient tomake a group finitely presented. In this paper, we develop
the theory of Σ-invariants due to Robert Bieri and Ralph Strebel [Bieri] whi provides an
answer to this question for the class of metabelian groups.

We begin our study of Σ-invariants with a digression on group extensions and basic
definitions used throughout the paper. From there we define the Σ-invariants and establish
their basic properties. We then devote a section to examples of computing the invariant
ΣA. e computation of ΣA is difficult in general; mu work in the field is on developing
methods to compute these invariants. In the last section, we sket the proof of the main
theorem.

1. G E

Definition ..: LetN andQ be groups. An extension ofQ byN is a short exact sequence¹

1 // N
ι // G

π // Q // 1.

We remark that the information whi determines an extension is the group G along
with the two maps ι and π. e reader is cautioned from thinking that an extension is
determined solely by the group G.

Definition ..: A morphism of extensions is a map of the ain complexes. at is, Given
(G, ι, π) and (G′, ι′, π′) extensions of Q by N , a morphism ϕ : (G, ι, π) → (G′, ι′, π′) is
given by a commutative diagram

1 // N
ι //

ϕN

��

G
π //

ϕG

��

Q //

ϕQ

��

1

1 // N
ι′ // G′ π′

// Q // 1

Definition ..: Two extensions are considered equivalent if there is a morphism ϕ : G→
G′ so that ϕN = idN and ϕQ = idQ. From the -lemma, this implies ϕG is an isomorphism
in the category of groups.

Definition ..: For groupsN andQ, define the set of extensions ofQ byN to beE (Q,N).
Define E (Q,N) := E (Q,N) / ∼ where ∼ is the equivalence of extensions.

If N is an Abelian group, an extension of Q by N posesses more structure. Specifically,
Q acts onN via conjugation throughG. For q ∈ Q, where q ∈ G is su that π (q) = q and
for any a ∈ N , define q · a := qaq−1. (Note that we make the standard identification of N

¹Caution: Some authors define this to be an extension of N by Q. We justify this terminology as it agrees
nicely with the cohomology of Q with coefficients in N . See proposition .
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with its image inG.) In this situation, we typically denoteN byA and write it additively. It
is routine to verify that this action is well defined. Furthermore, theQ-action onN satisfies
∀q ∈ Q, a, a′ ∈ N , q ·(a+ a′) = q ·a+q ·a′, i.e. N is aQ-module. Given a group extension
of Q by N , we call this Q-module structure on N the induced Q-module structure on N .

Definition ..: Let Q be a group. A Q-module is an Abelian group A equipped with a
Q-action that satisfies:

q · (a+ a′) = q · a+ q · a′.

In other words, a Q-module structure on A is a group homomorphism ϕ : Q→ End (A).
Alternatively, a Q-module structure on A is equivalent to A being a ZQ-module where

ZQ is the group ring of Q.

Definition ..: Given aQ-moduleAwith ϕ : Q→ End(A), we define Eϕ (Q,A) to be the
subset of E (Q,A) whi contains all extensions that induce the given Q-module structure
on A.

Definition ..: We define the support of λ =
∑

q∈Q nqq ∈ ZQ to be supp (λ) =
{q ∈ Q : nq ̸= 0}.

e definition of supp is motivated by interpreting λ ∈ ZQ as a function λ : Q →
Z. When λ =

∑
q∈Q nqq, then λ (q) := nq . en one can say that the group ring ZQ

is the collection of all functions λ : Q → Z with finite support. We will oen use this
interpretation of group ring elements.

Definition ..: Consider a Q-module A. Define the semi-direct product of the Q-module
A to beAoQwhi is the group on the setA×Qwith operation given by (a, q)∗(a′, q′) =
(a+ q · a′, qq′). Note that if the Q-module structure is trivial, i.e. q · a = a for all q ∈ Q,
a ∈ A, the semi-direct product is just the direct product Q×A.

Definition ..: We define the split extension of the Q-module A to be

A // ι // AoQ
π // // Q

where ι (a) = (a, 1) and π (a, q) = q.

Example ..: Investigating the extension classes in E (Z2,Z2 × Z2) illustrates that it is
possible for there to be more than just the split extension in Eϕ(Z2,Z2

2). Observe that

1 // ⟨i2⟩ // Q8
// Q8/⟨i2⟩ // 1

shows Q8 ∈ Eϕ(Z2,Z2
2) where ϕ(q) = idZ2 . e split extension in Eϕ(Z2,Z2

2) is the direct
product Z3

2. us asQ8 is not Abelian, the above extension ofQ8 is not the split extension.

Example ..: In E (Z,Z3) the extensions (Z, ι, π1), (Z, ι, π2) given by ι (n) = 3n,
π1 (n) = n mod 3, π2 (n) = 2n mod 3 are not equivalent. ey are, however, isomor-
phic. is illustrates that an extension is not determined by the group alone, and thus one
must always specify the maps ι and π when considering an extension.

Proposition ..: Consider a Q-module A, where Q is not necessarily Abelian. en
there is a bijection E (Q,A) ∼= H2 (Q,A). rough this bijection, we determine a group
structure on E (Q,A).

Definition ..: A metabelian group is a group G for whi there exists a short exact
sequence A // //G // //Q where A and Q are Abelian groups.
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We now may ask, “What conditions on a metabelian group are necessary and sufficient
for it to be finitely presented?” It was thought before the introduction of Σ-invariants that
an answer might depend upon whi extension class the extension determined in E (Q,A).
However, the main result of this paper shows that the finite presentability of a metabelian
group A // //G // //Q is determined by the Q-module A alone. at is, the split exten-
sion AoQ is finitely presented if and only if every extension group in E (Q,A) is finitely
presented. is result is furthermore sharp with regard to E (Q,A). at is, there are ex-
amples of Abelian groups Q and A for whi there are finitely presented and not finitely
presented groups in E (Q,A).

Convention: From here on, Q is a finitely generated Abelian group with finite free rank
rkQ = n, i.e. Q ∼= Zn ⊕ T (Q) where T (Q) is the torsion subgroup, and A is finitely
generated as a Q-module unless otherwise noted.

2. I  ΣA

Definition ..: LetR be a (not necessarily commutative) ringwith 1 and letΓ be a totally
ordered Abelian group. A valuation v onR with values in Γ is any map v : R→ Γ∞ whi
satisfies:

i.) v (xy) = v (x) + v (y);

ii.) v (x+ y) ≥ inf {v (x) , v (y)};

iii.) v (0) = ∞, v (1) = 0.

Remark ..: e condition v (1) = 0 is necessary to dispose of the trivial case v(K) =
∞, whi does not correspond with the other ideas of valuations and valuation rings. For
more on valuation rings and valuations, see [Bourbaki].

Definition ..: An additive aracter is a group homomorphism v : Q→ (R,+).
Additive aracters easily induce valuations v∗ : ZQ → R∞ in the traditional sense

discussed in the previous definition. We formulate this in the following proposition.

Proposition ..: For v ∈ Hom (Q,R) an additive aracter, we extend v to a valuation
v∗ : ZQ→ R∞ by defining:

i.) v∗ (λ) = min {v (q) : q ∈ supp (λ)};

ii.) v∗ (0) = ∞.

Proof. We need to show that for λ, µ ∈ ZQ the equations

i.) v∗ (λµ) = v∗ (λ) + v∗ (µ) and

ii.) v∗ (λ+ µ) ≥ inf {v∗ (λ) , v∗ (µ)}

are satisfied.
We write λ =

∑
q∈supp(λ) λ(q)q, likewise for µ and we compute

λµ =
∑

q∈supp(λ)
r∈supp(µ)

(λ(q)µ(r)) qr.
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We now see

v∗ (λµ) = min {v (q + r) : q ∈ supp (λ) , r ∈ supp (µ)}

v∗ (λ) + v∗ (µ) = min {v (q) : q ∈ supp (λ)} + min {v (r) : r ∈ supp (µ)}

and it is clear that v (qr) = v (q)+ v (r) will be minimal when v (q) and v (r) are minimal;
hence the first equation holds.

From the easily verified inclusion supp (λ+ µ) ⊆ supp (λ)∪ supp (µ), the second equa-
tion follows. ◃▹

Our main tool (the Σ-invariant) comes from studying Hom (Q,R). LetQ = Zn⊕T (Q)
be a decomposition ofQ into the direct sum of the torsion subgroup and the complementary
space whi is isomorphic to Zn. We define ei := (δi1, δi2, ..., δin) ⊕ 0 where δij is the
Kroneer delta. We now consider the homomorphism θ : Q � Zn defined by θ (ei) := ei.

Let u = (u1, ..., un) ∈ R. We then can define a valuation, vu in the natural way, by
seing vu (ei) = ui. In other words, vu (q) = ⟨u, θ (q)⟩.

e map θ then induces an R-vector-space isomorphism:

Definition ..: θ∗ : Rn → Hom (Q,R) whi is defined by θ∗ (u) := vu.
is construction also holds for any map θ : Q � Zn ↩→ Rn with finite kernel.

Definition ..: We are now in the position to define a topology on Hom (Q,R) via the
isomorphism θ∗ for our specific θ. However, the induced topology is really independent from
the oice of θ as Hom (Q,R) is a topological vector space, and there is only one topological
vector space of dimension n, namely Rn.

We will mainly be interested in the proper submonoids of Q defined for a valuation
v ∈ Hom (Q,R) asQv := {q ∈ Q | v (q) ≥ 0}. Suppose that v ∈ Hom (Q,R) and k ∈ R+.
en v and k ·v are both additive aracters whi additionally satisfyQv = Qk·v . We thus
introduce an equivalence relation on Hom (Q,R) \ {0} as we are really interested only in
the submonoids of Q determined by additive aracters.

Definition ..: For v, w ∈ Hom (Q,R)\{0}, we say v ∼ w iff there exists k ∈ R+ su
that v = k ·w. is defines an equivalence relation and we can thus construct the topological
quotient space of this relation; we annote it as S (Q) := (Hom (Q,R) \ {0}) / ∼.

Elements of S (Q) will be wrien as v for v ∈ Hom (Q,R) \ {0}.
Proposition ..: e space S (Q) is homeomorphic to Sn−1.

A monoid Qv determines a monoid ring ZQv in the same way that a group ring is
constructed. at is, ZQv = {λ : Qv → Z | |supp(λ)| <∞} is the free Abelian group with
a basis given by Qv with multiplication defined by extending the operation in Qv over the
addition by distributivity, i.e. (

∑
q nqq)(

∑
r mrr) =

∑
q,r nqmrqr.

Definition ..: Let q ∈ Q. en define Hq := {v | v (q) > 0}.
e subsetsHq of S (Q) correspond to the hemispheres in Sn−1. is can be seen easily

via the map θ as hemispheres in Sn−1 are defined for a direction u ∈ Sn−1 as Hu :={
x ∈ Sn−1 | ⟨u, x⟩ > 0

}
. We thus see the important fact that these sets are open.

We will find it useful to generalize this notation to the group ring ZQ.

Definition ..: For λ ∈ ZQ define Hλ := {v | v∗ (λ) > 0}.
Proposition ..: Hλ =

∩
q∈supp(λ)Hq , hence Hλ is also open.
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Proof. is is clear by definition of v∗ (λ) = min {v (q) | q ∈ supp (λ)}. ◃▹

We may now define our main tool ΣA.

Definition ..: Let A be a finitely generated Q-module. en

Σ(Q,A) := ΣA := {v ∈ S (Q) |A is finitely generated over ZQv} .

2.1. P  ΣA

Proposition ..: ΣA =
∪

λ∈C(A)Hλ where C (A) = {λ ∈ ZQ | ∀a ∈ A, λa = a} is
the centralizer. Furthermore, ΣA is an open subset of S (Q).

Proof. Note that it suffices to prove that v ∈ ΣA if and only if there exists λ ∈ C (A) for
whi v∗ (λ) > 0. Also observe the case where rkQ = 0 holds trivially as S (Q) = ∅.

Now assume rkQ = n ≥ 1. Consider v ∈ Σ (Q,A); we construct an element λ ∈
C (A) whi satisfies v∗ (λ) > 0. By assumption, there exists A = {a1, ..., ak} ⊆ A whi
generates A over ZQv . Pi q ∈ Q su that v (q) > 0. Su a q exists as v is a non-trivial
additive aracter onQ. en for all ai ∈ A, there is an expression q−1 ·ai =

∑k
j=1 λijaj ,

or equivalently
∑k

j=1 (δij − q · λij) aj = 0.
We thus can arrange these expressions into matrix notation as

(δij − q · λij)
k
i,j=1 ·


a1

a2

...
ak

 = 0,

and we set A := (δij − q · λij)
k
i,j=1 and a = T (a1, a2, ..., ak). Multiplying by Aadj—the

adjoint matrix of A—we obtain

detA · a = AadjA · a = 0,

hence detA annihilates every ai. Furthermore, by the commutativity of ZQv it is easily
seen that detA annihilates all of A. One can inductively compute detA to be of the form
detA = 1 − q · µ where µ ∈ ZQv . As µ ∈ ZQv , µ ̸= q−1, detA is a non trivial element
in the annihilator ideal. us λ := q · µ is a nontrivial element of C (A). We now finally
compute that

v∗ (qµ) = v (q) + v∗ (µ) > 0

as v (q) > 0 and µ =
∑
nr · r with r ∈ Qv and v∗ (µ) ≥ inf {v (r) | r ∈ supp (µ)} ≥ 0

by definition of Qv .
Now suppose that v : Q → R su that there exists λ ∈ C (A) with v∗ (λ) > 0. en

as R is an Arimedean group, there exists m > 0 for any nonzero µ ∈ ZQ su that
mv∗ (λ) > −v∗ (µ). us v∗ (µλm) = v∗ (µ) +mv∗ (λ) > 0 and µλm ∈ ZQv . Suppose
a ∈ A. then µa = µλma ∈ ZQva. erefore ZQa = ZQva. Given a finite generating
set A ⊆ A, we conclude that ZQA = ZQvA, hence A is a finite generating set of A over
ZQv . Hence v ∈ ΣA and the proposition follows. ◃▹

Proposition ..:
. Σ(Q,A) = ΣZQ/Ann(A), i.e. ΣA = Σ (Q,ZQ/Ann (A))
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. Let A′ // ι //A
π // //A′′ be an exact sequence of ZQ-modules. en

Σ(Q,A) = Σ (Q,A′) ∩ Σ(Q,A′′) .

Proof.

. It suffices to show that C (A) = C (ZQ/Ann (A)) by proposition . In the proof,
we will use the identity C (M) = Ann (M) + 1 for all Q-modulesM .

Let λ ∈ C (A). en λ − 1 ∈ Ann (A), hence for all µ ∈ ZQ we have (λ− 1)µ ∈
Ann (A). erefore (λ− 1)µ = λ− 1µ = 0 in ZQ/Ann (A), from whi we
conclude λ − 1 ∈ Ann (ZQ/Ann (A)) = C (ZQ/Ann (A)) − 1 and hence, λ ∈
C (ZQ/Ann (A)).

Now suppose λ ∈ C (ZQ/Ann (A)). en λ1 = 1 from whi we conclude λ− 1 ∈
Ann (A) = C (A) − 1; hence λ ∈ C (A) as desired.

. Let v ∈ ΣA. By definition there exists a finite subset A of A whi generates A over
ZQv . As A projects onto A′′ via π, the set πA = {π (a) | a ∈ A} clearly generates
A′′ over ZQv , hence v ∈ ΣA′′ .

We observe that C (A) ⊆ C (A′). erefore by the above theorem, it follows directly
that ΣA ⊆ ΣA′ . is paragraph and the previous one have established that ΣA ⊆
ΣA′ ∩ ΣA′′ .

Now let v ∈ ΣA′ ∩ ΣA′′ . ere then exist finite sets A′ ⊆ A′ and A′′ ⊆ A′′ whi
generate A′ and A′′ respectively over ZQv . Let s : A′′ → A be a function whi
satisfies idA = π ◦ s. en the set A = {ι (a′) | a′ ∈ A′} ∪ {s (a′′) | a′′ ∈ A′′} can
be easily shown to generate A over ZQv , hence v ∈ ΣA and the result follows.

◃▹

2.2. C  ΣA

Example ..: Consider the case when Q = Z = (q), A = ⊕i∈ZZai, and q ·
∑
nia

i =∑
nia

i+1.

0 // ⊕i∈ZZai
// ⊕i∈ZZai o Z // Z // 1

is is specifically the case of the wreath product G = Z ≀ Z. e wreath product itself
is a very useful and interesting construction in group theory. In fact, the category of groups
with the wreath product has the structure of a non-commutative monoid!

We now show that ΣA = ∅. We begin by fixing θ : Q → R to be θ
(
qi

)
= i. Observe

that S (Q) = {v1, v−1} where v1
(
qi

)
= i and v−1

(
qi

)
= −i.

Suppose A = {α1, ..., αk} is a finite set of A. We show that A is not a generating set of
A over ZQ1 and ZQ−1 (we abuse notation here). For ea i, we have αi =

∑
j αija

j where
only finitely many αij ̸= 0. e set {j |αij ̸= 0} is finite and thus posesses a maximum
and minimum; denote them asM andm respectively. For any λ ∈ ZQ1, we have λ · αi ∈
⊕l≥mZal; hence am−1 /∈ ⟨α1, ..., αk⟩ZQ1 . For λ ∈ ZQ−1 we similarly have λ · αi ∈
⊕l≤MZai; thus A is not a generating set over ZQ−1.
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More generally, for any ZQ-module structure on A whi makes A a finitely generated
ZQ-module, we have ΣA = ∅.

Let Q = (q) ∼= Z and A = ⊕i∈ZZai, i.e. the free Z-module on {ai | i ∈ Z}. Suppose
there is a Q-module structure on A whi makes A a finitely generated Q-module, and
furthermore, suppose A is also a tameQ-module. at is, A is finitely generated overQ1 =
{qn |n ≥ 0} orQ−1 = {q−n |n ≥ 0}. Without loss of generality, assume that A is finitely
generated over Q1. For if it were finitely generated over Q−1, we could just consider the
action of Q = (r) on A by r · a = q−1 · a. is new action then finitely generates A over
Q1.

Without loss of generality, we may assume that A =
{
aij | 1 ≤ j ≤ k

}
is a finite gen-

erating set of A over Q1. For if {α1, ...αt} generates A finitely over Q1, then so does
∪t

1 supp(αi).
en Q1A =

{
qnaij |n ≥ 0, 1 ≤ j ≤ k

}
generates A as an Abelian group. is set

is not necessarily linearly independent over Z. We now construct a Z-linearly independent
subset ofQ1Awhi we denote as Q . Begin with Q1 := A. Given Qn−1, we first construct
Vn,0 = ∅ and define

Vn,j =

{
Vn,j−1 ∪

{
qnaij

}
if Qn−1 ∪ Vn,j−1 ∪

{
qnaij

}
is linearly independent over Z

Vn,j = Vn,j−1 otherwise.

then Qn = Qn−1 ∪ Vn,k . It is not the case that ⟨Q ⟩Z = A. However, A/⟨Q ⟩ is a torsion
Abelian group. is follows as qnaij /∈ Q implies all consecutive powers qn+ℓaij /∈ Q .
We see this as for qnij /∈ Q implies there is a non-trivial equation relating an integer
multiple of qnaij to the elements in Qn−1 ∪ Vn,j−1. Multiplying this equation by q and
perhaps some integer yields a non-trivial equation realating some integer multiple of qnaij

to the elements in Qn ∪ Vn+1,j−1.
ere must exist some ℓ for whi {qnaiℓ

|n ≥ 0} ⊆ Q . To see this, we work over Q.
e setQ1A generates⊕Qai. Furthermore, our construction of Q yields a basis for⊕Qai.
As ⊕Qai is infinite dimensional, the set Q must be infinite.

From this realization, there are at most k − 1 independent equations obtained between
the elements of Q1A. Now for all 1 ≤ j ≤ n there are integers mj su that mjq

−1aij

is a Z-linear combination in terms of Q . Multiplying ea one of these expressions by q
and possibly some integer gives us k linear relations among the elements of Q . Define
j′ = inf

{
r | qraij /∈ Q

}
. For example

mq−1ait =
j′∑

r=0

∑
j

µrjq
raij ()

mait =
j′∑

r=0

∑
j

µrjq
r+1aij . ()

ere are at most k − 1 terms in the right-hand side of this equation whi are not in Q .
ese are those terms µrj′qj′+1aij . Aer multiplying equation  by some integer, we can
reduce every term µrj′qj′+1aij into terms of Q . Note that in , the “degree 0” terms, i.e.
terms of the form cq0aij , c ∈ Z, come from reducing the terms µrj′qj′+1aij . However, as





there are at most k−1 equations used in ea equation to reduce it into terms of Q , at least
one of the obtained equations has to be non-trivial. is follows as one ofmaij is not in the
Abelian group generated by the k−1 degree 0 parts of the relations used. ere is therefore
a non-trivial linear relationship among the elements of Q whi is a contradiction.

Example ..: Consider the case where Q = Z = (q), A = Z [1/2] and q · x = 2x
(note that q−1 · x = 1

2x). With the description of S(Q) as in the previous example, we
will show ΣA = {v−1}. It is clear that {1} generates A over ZQ−1 as q−n · 1 = 1

2n , and
⟨2n |n ≤ 0⟩Z = A. An argument similar to the one in the previous example shows that no
finite set A ⊆ A generates A over ZQ1.

In general, any Q-module structure on A is tame (see definition ). First off, q · − :
A → A must be an automorphism of A. is automorphism is Z-linear, but by induction
on n, we see that q· is Z[1/2]-linear from the equation 2(q · 2−n−1) = q · 2−n. Hence
q· ∈ GL1 (Z[1/2]), i.e. q ·1 = ±2−k for some k ∈ Z. An entirely analogous computation to
that in the preceeding paragraph shows that either ΣA = {v1} or ΣA = {v−1}. Tameness
will play an important role in our proof of the main result.

From this computation, we note that ΣA is never all of S (Q). is is due entirely to the
fact that A is not a finitely generated Abelian group; see theorem  for more details.

Example ..: Consider the case where Q = Z = (q), A = Z [1/2] ⊕ Z [1/2], and the
ZQ-module structure on A is given by

q ·
(
x1

x2

)
=

(
1/2 0
0 1/2

)
·
(
x1

x2

)
.

It is then not too difficult to see that ΣA = {v1} with the help of the computations made in
the previous example and by the linearity of the action.

is oice of Q and A exhibit an interesting property that the previous two examples
do not. is property is that there exist ZQ-module structures on A for whi A is tame
and for whi A is not tame. We will see the importance of this when we get to the main
theorem of this paper.

With Q and A as above, the ZQ-module structure on A given by

q ·
(
x1

x2

)
=

(
2 0
0 1/2

)
·
(
x1

x2

)
makes A a non-tame ZQ-module. at is, ΣA = ∅.

3. G L

e common tool in the proofs to come is the geometric lemma whi we prove in this
section.

Definition ..: Let X be a set. Define fX := {A ⊆ X : |A| <∞}.
roughout this section, F ∈ ffRn and L ∈ F . We also define the open ball of radius ρ

centered at x by B (ρ;x) := {y ∈ Rn | |y − x| < ρ}. If x = 0, we simply write Bρ.

Definition ..: An element x ∈ Rn can be taken from Bρ by F if there exists L ∈ F
su that x+ L ⊆ Bρ or if x ∈ Bρ. If there exists L ∈ F su that x+ L ⊆ Bρ, we say x
can be properly taken from Bρ by F with respect to L.





Definition ..: e set of points x ∈ Rn whi can be taken from Bρ by F will be
denoted by T (F , ρ).

As a preliminary observation, we see that a point x ∈ Rn can be properly taken from
Bρ by F with respect to L if and only if x ∈

∩
y∈LB (−y; ρ). us we have

T (F , ρ) =
∪

L∈F

 ∩
y∈L

B (−y; ρ)

 ∪Bρ.

Lemma ..: Suppose F ∈ ffRn su that for any x ∈ Rn \ {0} there exits L ∈ F su
that ⟨x, y⟩ > 0 for all y ∈ L. en there exists ρ0 > 0 and a function ε : {ρ | ρ > ρ0} → R+

su that for all ρ > ρ0 we have Bρ+ε(ρ) ⊆ T (F , ρ). Furthermore, ε is an increasing
function.

e casual reader can easily skip the details of the proof. e essential geometric fact we
are utilizing (in imprecise language) is that spheres flaen out as their radius gets larger.

Proof. Define f : Sn−1 → R by f (u) := maxL∈F miny∈L {⟨u, y⟩ | y ∈ L ∈ F}. One
can show that f is continuous utilizing the continuity of ⟨−,−⟩without too mu difficulty.
By the compactness ofSn−1 there exists v ∈ Sn−1 su that f (v) = inf

{
f (u) |u ∈ Sn−1

}
>

0. Set C := f (v). Also define D := maxL∈F maxy∈L {|y| | y ∈ L ∈ F} > 0.
Set ρ0 = D2

2C and ε (ρ) = C −
(

D2

2ρ

)
. By our oice of C , for all x ∈ Rn \ {0} there

exists Lx ∈ F su that miny∈Lx

{
⟨−x
|x| , y⟩ | y ∈ Lx

}
≥ C . We see this as

max
L∈F

min
y∈L

{
⟨−x
|x|

, y⟩
}

= f

(
−x
|x|

)
≥ C.

us for |x| > ρ0 and y ∈ Lx we have

|x+ y|2 = |x|2 + 2⟨x/|x|, y⟩|x| + |y|2

≤ |x|2 − 2C|x| +D2

≤ |x|2

where the last inequality is justified by

−2C|x| +D2 < −2Cρ0 +D2

= −D2 +D2 = 0.

Moreover,

|x+ y| − |x| =
|x+ y|2 − |x|2

|x+ y| + |x|

≤ −2C|x| +D2

2|x|
= −ε (|x|)

hence |x + y| ≤ |x| − ε (|x|). us for all x su that ρ0 < ρ ≤ |x| < ρ + ε (ρ) we have
|x+ y| ≤ |x| − ε (|x|) < ρ+ ε (ρ)− ε (|x|) < ρ; that is, x+ y ∈ Bρ for all y ∈ Lx, hence
x ∈ T (F , ρ) and Bρ+ε(ρ) ⊆ T (F , ρ). ◃▹
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Example ..: To make this concrete, we look at the example when n = 2 and F =
{{(1, 0)} , {(0, 1)} , {(−1, 0)} , {(0,−1)}}. We would like to demonstrate what restricts
the size of τ in the equation Bρ ⊆ Bτ ⊆ T (F , ρ). It is clear that the points (x, y) ∈
∂T (F , ρ) whi are closest to Bρ (for ρ > 1/

√
2) are those points whi satisfy x = y

or x = −y, and the points whi are furthest away are those of the form (x, 0) or (0, y).
We concentrate our aention to the first quadrant as the others follow by symmetry. We

compute the point (x, x) ∈ ∂T (F , ρ) to be given by
( 1+

√
−1+2ρ2

2 ,
1+

√
−1+2ρ2

2

)
whi has

length 1√
2

(
1+

√
−1 + 2ρ2

)
. For ρ > 1/

√
2 we have ρ < 1√

2

(
1+

√
−1 + 2ρ2

)
< 1√

2
+ρ.

us the biggest ball we can fit into T (F , ρ) is going to be determined by the value of
1√
2

(
1 +

√
−1 + 2ρ2

)
whi is an increasing function for ρ > 1/

√
2. us the “flaening”

is seen as ρ gets larger and the distance between the cusps at the points (x,±x) and the ball
Bρ increases. We note that this distance is bounded by 1/

√
2.

Figure : e blue circle is the boundary of the ball B1 whi we are taking points from.
e bla circle is the boundary of the largest ball whi fits in T (F , 1), namely B2/

√
2.

4. C  Q A  ΣA = S (Q)

We oose to prove the following theorem for a few reasons: first off, it gives a useful
computation of ΣA and builds our intuition about what the Σ-invariant is describing; iefly,
the proof illustrates the way we will be applying the Geometric Lemma (lemma ) for our
major result to come. We have indeed built up all the necessary concepts needed for this
section, so we go right to the statement of the theorem and its proof.

eorem ..: Let Q be a finitely generated Abelian group of free rank n; let A be a
finitely generated Q-module. en ΣA = S (Q) if and only if A is a finitely generated
Abelian group.

Proof. We begin by fixing a homomorphism θ : Q // //Zn � � //Rn , or for sake of
convenience, the explicit one described above. We now define Xρ := θ−1 (Bρ). e sets
Xρ satisfy the two following properties:

i.) for ρ < τ , Xρ ⊆ Xτ ;

ii.)
∪

ρXρ = Q.
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Suppose now that ΣA = S (Q). en by Propositions ,  and , we have Sn−1 =
S (Q) =

∪
λ∈C(A)Hλ, hence {Hλ |λ ∈ C (A)} is an open cover of the compact topological

space Sn−1. ere thus exists a finite subcover, and hence a finite subset Λ ⊆ C (A) su
that {Hλ |λ ∈ Λ} covers Sn−1.

Define F := {{θ (q) | q ∈ supp (λ)} |λ ∈ Λ} ∈ ffRn. As valuations v ∈ S (Q) can
be interpreted as inner products, i.e. ∃u ∈ Sn−1 su that v (q) = ⟨u, θ (q)⟩, it follows by
the definition of ΣA and our assumption that F satisfies the hypothesis of the Geometric
Lemma. us there exists a ρ0 > 0 and an increasing function ε : {ρ | ρ > ρ0} → R+ su
that Bρ+ε(ρ) can be taken from Bρ.

Interpreting this result in Q, we obtain for q ∈ Xρ+ε(ρ) an element λ ∈ Λ su that
θ (q) + θ (r) ∈ Bρ for all r ∈ supp (λ). As θ (q) + θ (r) = θ (qr) ∈ Bρ, we have qr ∈ Xρ.
us qλ =

∑
r∈supp(λ) nr (qr) ∈ ZXρ.

Now consider a ∈ A and q ∈ Xρ+ε(ρ). en q · a = q · (λ · a) = qλ · a ∈ Xρa.
However, as q ·a ∈ Xρ+ε(ρ) is a general element, we conclude that ZXρ+ε(ρ)a ⊆ ZXρa for
all a ∈ A. e inclusion ZXρa ⊆ ZXρ+ε(ρ)a is clear by property i.) of the setsXρ. We have
thus shown ZXρ+ε(ρ)a = ZXρa for all a ∈ A. Furthermore, for any c ∈ [ρ, ρ+ ε (ρ)], we
have ZXca = ZXρa.

Fix some ρ′ > ρ0 and constant c whi satisfies 0 < c < ε (ρ′). us by induction, one
can establish ZXρ′a = ZXρ′+nca for all n ∈ N. It thus follows by property ii.) of the sets

Xρ that ZXρa = Z
(∪

t>ρ′ Xt

)
a = ZQa.

Suppose now that A is a finite basis for A as a Q-module. en A = ZQA = ZXρ′A.
However,Xρ′A = {q · a | q ∈ Xρ′ , a ∈ A} is a finite set whi generatesA as a Z-module.
at is, A is a finitely generated Abelian group.

e implication thatA being a finitely generatedAbelian group implies thatΣA = S (Q)
is immediate by the initial definition of ΣA. us the theorem has been proven. ◃▹

5. T QM

In the following sections, all Q-modules A will be right Q-modules.

Definition ..: Given aQ-module A, we can define an associated leQ-module A∗ via
the multiplication q · a := a · q−1.

Proposition ..: ΣA∗ = −ΣA

Proof. Suppose v ∈ ΣA∗ and let A = {a1, ...ak} be a basis for A∗ over Qv . us for any
a ∈ A∗ there exist λi ∈ ZQv su that

a =
k∑

i=1

aiλi

=
k∑

i=1

li∑
j=1

λij (aiqij)

=
k∑

i=1

li∑
j=1

λij

(
q−1
ij ai

)
.
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As q−1
ij ∈ Q−v for all i, j, we conclude that A generates A as a Q−v-modules; hence

ΣA∗ ⊆ −ΣA. e other inclusion follows analogously, hence the proposition. ◃▹

Definition ..: AQ-moduleA is tame if it is finitely generated overZQ andΣA∪ΣA∗ =
S (Q), or equivalently ΣA ∪ −ΣA = S (Q).

Proposition ..:

. If the Q-module A is tame, then so are its all submodules of A.

. Homomorphic images of tame modules are tame.

. Finite direct products of a tame module A are tame.

Proof.

. Let A′ ⊆ A, or in other words, A′ // //A . By Proposition , part , we have
ΣA ⊆ ΣA′ . us S (Q) = ΣA ∪ −ΣA ⊆ ΣA′ ∪ −ΣA′ , hence A′ is tame.

. Follows as in part . of this proof by Proposition , part .

. As C (A) ⊆ C (An), we have ΣA ⊆ ΣAn ; hence the proposition follows by the
description of Σ in Proposition .

◃▹

Proposition ..: Let ϕ : Q̃ → Q be a homomorphism with |cokerϕ| < ∞ and let A
be aQ-module. Let Ã be the Q̃-module obtained by restricting scalars to ϕ

(
Q̃

)
. at is, for

q̃ ∈ Q̃ and a ∈ A, define q̃ · a := ϕ (q̃) · a. Any su ϕ induces a map ϕ∗ : S (Q) → S
(
Q̃

)
given by ϕ∗ (v) := v ◦ ϕ. We then have:

. ϕ∗ (Σ (Q,A)c) = Σ
(
Q̃, Ã

)c
:

a.) ϕ∗ (Σ (Q,A)c) ⊆ Σ
(
Q̃, Ã

)c
,

b.) Σ
(
Q̃, Ã

)c ⊆ imϕ∗,

c.) (ϕ∗)−1 (
Σ

(
Q̃, Ã

)c) ⊆ Σ(Q,A)c;

. A is tame if and only if Ã is tame.

Proof.

. a.) Observe that Ã is finitely generated over Q̃ if and only if A is finitely generated
over ϕ

(
Q̃

)
. Suppose v ∈ Σ(Q,A)c. en A is not finitely generated over Qv .

Since ϕ
(
Q̃v◦ϕ

)
= ϕ

(
Q̃

)
∩Qv ⊆ Qv , Ã is not finitely generated over Q̃v◦ϕ.

b.) Let ṽ ∈ Σ
(
Q̃, Ã

)c
. Define v : ϕ

(
Q̃

)
→ R via v ◦ ϕ = ṽ. e map v is well

defined, for it is well defined at 0. at is, oose any q ∈ ker (ϕ). We then have
q · a = ϕ (q) · a = 1 · a = a and thus q, q−1 ∈ C

(
Ã

)
. Since ṽ ∈ Σ

(
Q̃, Ã

)c
, we

have ṽ
(
C

(
Ã

))
≤ 0. We thus conclude ṽ (q) = 0, and hence, v is well defined. As

divisibility is equivalent to injectivity in Ab, we can extend v to a homomorphism
v defined on all of Q as seen in the diagram below. Hence v ◦ ϕ = ṽ as desired.
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R

Q

v

>>|
|

|
|

|
|

|
ϕ
(
Q̃

)oo
id |ϕ(Q̃)

oo

v

OO

1oo

Plainly speaking, there are two scenarios to consider:

i. for x ∈ Q\ϕ
(
Q̃

)
there exists q̃ ∈ Q̃ and n ∈ Z\{0} su that n ·x = ϕ (q̃).

en define v (x) := ṽ(q̃)
n whi is possible as R is divisible.

ii. x ∈ Q \ϕ
(
Q̃

)
does not satisfy the hypothesis of the previous case. en x is

necessarily of finite order, in whi case define v (x) := 0;

c.) We now prove the contrapositive of c.), namely, if v ∈ Σ(Q,A), then ϕ∗ (v) ∈
Σ

(
Q̃, Ã

)
. We thus assume that there is a finite set A whi generates A overQv ,

and it remains to show that A is finitely generated over Qv ∩ ϕ
(
Q̃

)
.

By our assumption that cokerϕ is finite, we can oose a representative system
q1, ..., qm of cokerϕ = Q/ϕ

(
Q̃

)
. Furthermore, we may oose q1, ..., qm su

that v (qi) ≤ 0. For if the free rank of Q is 0, then v (q) = 0 for all q ∈ Q. If the
free rank of Q is nonzero, there is then an element of infinite order in imϕ ∩ Q
whi satisfies v (q) < 0. Hence if v (qi) > 0, we can replace it with some
qmqi as v (qmqi) = mv (q) + v (qi) ≤ 0 holds for sufficiently large m ∈ N by
the Arimedian property. us our assumption about the representative system
q1, ..., qm is justified.

We now consider some a ∈ A given by a =
∑
λiai where λj =

∑
λijrij where

rij ∈ Qv , λij ∈ Z. en as rij = qℓijϕ (sij) for all ij, we have

a =
∑

λiai

=
∑ (∑

λijrij

)
ai

=
∑ (∑

λij (rijai)
)

=
∑ (∑

λijϕ (sij) qℓijai

)
and 0 < v (ℓij) = v

(
qℓij

)
+ v (ϕ (sij)). From assumption that v

(
qℓij

)
≤ 0

we conclude 0 ≤ −v
(
qℓij

)
< v (ϕ (s̃ij)). erefore {qi · aj} forms a basis over

Qv ∩ ϕ
(
Q̃

)
and is finite.

. Observe A is tame if and only if Σ(Q,A)c ⊆ −Σ(Q,A).

Suppose A is tame. en

Σ
(
Q̃, Ã

)c = ϕ∗ (Σ (Q,A)c) ⊆ ϕ∗ (−Σ (Q,A)) ⊆ −Σ
(
Q̃, Ã

)
yields Σ

(
Q̃, Ã

)c ⊆ −Σ
(
Q̃, Ã

)
as desired. e rightmost inequality holds as part  of

the proof works for both le and right modules and we have−Σ (Q,A) = Σ (Q,A∗).
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Now suppose Ã is tame. en just as above, we have

Σ(Q,A)c = (ϕ∗)−1
(
Σ

(
Q̃, Ã

)c
)
⊆ (ϕ∗)−1

(
−Σ

(
Q̃, Ã

))
⊆ −Σ(Q,A)

with whi the tameness of A is proven.

◃▹

6. F P M G

eorem ..: An extension of Q by A is finitely presented if and only if A is a tame
Q-module.

e first thing we note from this theorem is that it says the finite presentability of a
metabelian group depends only on what the Q-module is, and not on the element it deter-
mines in E (Q,A) ∼= H2 (Q,A).

To prove this theorem, we establish a few lemmas first.

Lemma ..: Let Q1 be a complementary subgroup of T (Q), i.e. so that Q1
∼= Zn,

and let G1 := π−1 (Q1). Observe that there is a Q1 module structure on A via the map
Q1 � Q by restriction of scalars. en

i. A is tame over Q if and only if A is tame over Q1;

ii. G is finitely presented if and only if G1 is finitely presented.

Proof.
i. Observe that the canonical injection ι : Q1

// //Q satisfies the conditions of Propo-
sition . us our first claim is proven.

ii. Note that G/G1
∼= Q/Q1

∼= T (Q) whi is a finite group. at is, G1 is a subgroup
of finite index in G. It is a standard result that a subgroup of finite index is finitely
presented if and only if the group is finitely presented, and thus, the reduction step
follows. A proof can be found in [Lyndon, p ]

◃▹

6.1. ΣA ∪ −ΣA = S(Q)     

In this subsection, we show that a finitely presented metabelian group impose a tame
Q-module structure on A. e proof of this relies on topological properties of the Cayley
complex of G.

Definition ..: Let G = ⟨X |R⟩ be a presentation of the group G. Denote the Cayley
complex by Γ̃ = Γ̃ (X,R). e Cayley complex we are interested in has 0-cells given by
G, 1-cells given by G × X and 2-cells given by G × R. It is convenient to introduce the
notation of inverse 1-cells

(
gx, x−1

)
whi is the inverse path of (g, x). at is, we consider

the disjoint union of cells indexed by these sets, then take the quotient space given by the
following rules of gluing:

. A 1-cell (g, x) ∈ G× X begins at g and ends at gx; in other words, the boundary of
a 1-cell (g, x) is given by ∂ (g, x) = gx− x.
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. A 2-cell (g, r) ∈ G× R with r = y1y2 · · · ys, yi ∈ X ∪ X−1 has boundary

∂ (g, r) = (g, y1) (gy1, y2) · · · (gy1y2 · · · ys−1, ys) .

We note that “redundant faces” are not deleted, and the cells are unoriented. See [Lyndon,
III.] for more details on this construction.

Proposition ..: We establish some basic facts the Cayley complex Γ̃ of a group G =
⟨X |R⟩. We denote by Γ̃r the r-skeleton of Γ̃.

. e Cayley complex Γ̃ is connected and simply connected.

. G acts on Γ̃ by le multiplication. For g ∈ G the explicit description of the action is
that for h ∈ Γ̃0, g ·h = gh; for (h, x) ∈ Γ̃1, g · (h, x) = (gh, x); and for (h, r) ∈ Γ̃2,
g · (h, r) = (gh, r).

. Γ̃ is the universal cover for G \ Γ̃ := Γ̃/ ∼, i.e. the quotient space of Γ̃ by G. e
space G \ Γ̃ has fundamental group isomorphic to G.

. IfN ▹G, we see by covering space theory thatN \ Γ̃ has fundamental groupN , and
the action of G on Γ̃ induces an action of G/N on N \ Γ̃.

Proof. ese are routine properties of the Cayley complex whi can be found in [Lyndon,
III.,III.,III.]. ◃▹

eorem ..: IfG is a finitely presented metabelian group, then A is a tameQ-module.

Proof. We assume that G is finitely presented and that Q ∼= Zn. We construct a finite
presentation whi is well suited for our investigation. Pi the generators X = T ∪ M
where T = {t1, ..., tn} are su that {qi := π (ti) | 1 ≤ i ≤ n} is a basis for Q. Now pi
a finite set M whi generates A as a normal subgroup of G and is disjoint from T . Note
that in this seing, M generating A as a normal subgroup in G is equivalent to M being a
generating set of A as a Q-module. e set X is then necessarily a generating set of G, and
there exists a finite set R of relations for this generating set whi gives a presentation of
G = ⟨X |R⟩.

We thus consider the Cayley complex ofGwith respect to the presentationG = ⟨X |R⟩
whi we denote by Γ̃ := Γ̃ (X; R). Define Γ := A \ Γ̃. e complex Γ has fundamental
group π1 (Γ) = A. e fundamental group π1(γ) is equipped with a Q-module structure
given by the action of Q on Γ mentioned in proposition , and agrees with the action of
Q on A. e action may be explicitly described as follows: let q = π (ts1

1 · · · tsn
n ) and

γ ∈ π1 (Γ); consider the path

µ = (1, t1) (q1, t1) · · · (qs1
1 , t2) · · · · · ·

(
qs1
1 · · · qsn−1

n , tn
)
;

then q ·γ = µ (qγ)µ−1. at is, in the fundamental groupoid of Γ, whi we denote Π(Γ),
the action ofQ on π1 (Γ) is given by conjugating π1 (Γ, q) by q. In terms ofA, theQ-action
on π1 (Γ) coincides with the Q-module structure on A.

We now seek to beer understand the 1-complex of Γ. Observe that Γ1 decomposes as
Γ1 = Ω ∪ ∆ where Ω := (Q,Q×M) and ∆ := (Q,Q× T ). e picture is that ∆ is an
n-dimensional grid and Ω is the union of a bouquet² of card (M) circles at ea vertex.

²i.e. one point union
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With these details behind us, we can finally get to the main idea of the proof. Consider
a non-trivial additive aracter v : Q → R, and fix θ : Q � Zn ↩→ Rn. It is perhaps
most intuitively clear if we take θ (qi)) = ei. en associate (with an abuse of notation
v = (v1, ..., vn)) v (q) = ⟨v, θ (q)⟩. Define Γv to be the subcomplex generated by the
vertices Qv , i.e. an r-cell is in Γv if and only if its boundary lies entirely in Γv . Likewise
define ∆v = Γv ∩ ∆ and Ωv = Γv ∩ Ω.

Where we are headed: Our main goal is to apply Van Kampen’s theorem for
any non-trivial additive aracter v and suitably osen q ∈ Qv to Γ with
subspaces Γv and qΓ−v . e intuitive idea then is that the only way to write
the Abelian group A as an amalgamated product is if it is in a trivial way.
From this, we will get a Q-module surjection of π1 (Γϵv) onto A for some ϵ =
±1. Applying the Hurewicz transformation gives us a surjection of H1 (Γϵv)
whi is easier to work with. For any v, we can show thatH1 (Γv) is a finitely
generated Qv-module without too mu difficulty. It therefore follows that A
is either a finitely generated Qv module or a finitely generated Q−v-module.
Hence for any v ∈ S (Q), either v ∈ ΣA or −v ∈ ΣA.

We now fill in the details of the proof.

Lemma ..: Consider a non-trivial additive aracter v and suppose θ is osen as above.
For any q ∈ Q that satisfies v(q) ≥ 2

√
2∥v∥, the space Γv ∩ qΓ−v is path connected. A

stronger result in [Bieri, § .], but we content ourselves with this version.

Proof. We are concerned with ∆v ∩ q∆−v in this proof as connectivity is just a ques-
tion about the 1-skeleton and the loops at a point are irrelevant. roughout the proof, we
identify a point p =

∏
qpi

i with (p1, ..., pn) ∈ Zn.
As v(p) = ⟨v, p⟩, we can extend v to all of Rn by v(x) = ⟨v, x⟩. en the intersection

Γv ∩ qΓ−v lies within the region L = {x ∈ Rn | 0 ≤ v(x) ≤ v(q)}. In other words, we
are looking at the piece of Rn between the hyperplanes P1 = {x | ⟨v, x⟩ =

∑
vixi = 0}

and P1 + θ(q) whi are evidently parallel to one another. One can then verify that the
distance between these two hyperplanes is v(q)/∥v∥ ≥ 2

√
2. Because of this, any point

p ∈ Qv ∩ qQ−v has at least n2 − n “neighboring” points also in Qv ∩ qQ−v .
Consider p = (p1, ..., pn) ∈ Qv ∩ qQ−v . By a neighboring point, we mean those points

p±ei ±ej and p±ei for all 1 ≤ i < j ≤ n and signs. Suppose p+ei, p−ei /∈ Qv ∩ qQ−v

as p ∈ Qv ∩ qQ−v the points p± ei lie in different connected components of Rn \L. us
2 = ∥p+ei−(p−ei)∥ > 2

√
2 whi is absurd. Hence at least one of p±ei ∈ Qv∩qQ−v . A

similar realization shows us that if p±ei±ej /∈ Qv∩qQ−v , then−(p±ei±ej) ∈ Qv∩qQ−v .
Let p ∈ Qv ∩ qQ−v and 1 ≤ k ≤ n; define ∆p,k to be the 1-subcomplex of ∆v ∩ q∆−v

determined by the 0-cells {qp1
1 · · · qr

k · · · qpn
n | r ∈ Z}∩∆v∩q∆−v . For any p ∈ Qv∩qQ−v

and any 1 ≤ k ≤ n, the complexes ∆p,k are evidently path connected.
We work under the added condition that v(qi) > 0 for all i. We show for 1 ≤ i ≤ n and

any point p ∈ Qv ∩ qQ−v , there exists a point p′ ∈ ∆p,1 and a point p′′ ∈ ∆p,1 su that
p′qi ∈ Qv ∩ qQ−v and p′′q−i ∈ Qv ∩ qQ−v . Since v(qi) > 0 for all i, every ∆0

p,1 consists
of finitely many points. We thus define pL ∈ ∆0

p,1 to be the point su that pLq
−1
1 /∈ ∆0

p,1

and pR ∈ ∆0
p,1 su that pRq1 /∈ ∆p,1.
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e proof follows by cases³. Let ϵ = ±1 be a sign. Suppose at every point r ∈ ∆p,1

that rqϵ
i /∈ Qv ∩ qQ−v . en it is the case that both 0 ≤ v(pL) + ϵvi − v1 ≤ v(q) and

0 ≤ v(pR)+ϵvi+v1 ≤ v(q). One then shows that this implies either pL−e1 ∈ Qv∩qQ−v

or pR + e1 ∈ Qv ∩ qQ−v depending on ϵ and the sign of v1 and vi. We show the case when
ϵ = 1, v1, vi > 0. is then implies 0 ≤ v(pR) ≤ v(pR) + v1 ≤ v(pR) + vi + v1 ≤ v(q),
hence pR + e1 ∈ Qv ∩ qQ−v whi is a contradiction. See figure .

· · ·

· · ·

· · ·

rs

rs rs rs rs rs rs

rs

b b b b b b

b b b b
pRpL

ei

e1

Figure : e boxes represent points whi are not in Qv ∩Q−v under the assumption that
r − ei /∈ Qv ∩ qQ−v for all r ∈ ∆p,1. e circular dots are points that we can determine
are in Qv ∩Q−v .

Assume that v(qi) > 0 for all i. We then show that for any point p ∈ Qv ∩ qQ−v ,
there is a path from (0, ..., 0) ∈ Qv ∩ qQ−v into ∆p,1 for p contained in ∆v ∩ q∆−v , and
hence to p. We prove this by induction on n. If n = 1, then ∆0,1 = ∆v ∩ q∆−v whi
we know is path connected. Now supposing there is a path from 0 to ∆(p1,...,pn−1,0),1, by
induction on |pn| there is a path from ∆(p1,...,pn−1,0),1 to ∆(p1,...,pn−1,pn),1 and hence to
p. e case |pn| = 1 was established in the previous paragraphs. us supposing there
is a path from ∆(p1,...,pn−1,0),1 into ∆(p1,...,pn−1,pn−sgn(pn)),1, there is a point psgn(pn) ∈
∆(p1,...,pn−1,pn−sgn(pn)),1 for whi psgn(pn) + sgn(pn) ∈ Qv ∩ qQ−v . Hence the result for
when v(qi) > 0 for all i.

Now if v(qi) = 0 for some i, then p + Zeij ⊆ Qv ∩ qQ−v . us given a point p =
(p1, ..., pn), we need only be concerned finding a path from 0 to∑

i
v(qi )̸=0

piei

whi is then contained in some lower dimensional subspace, on whi, v satisfies the con-
ditions of our special case. us the result is proven.

◃▹

Lemma ..: Consider a non-trivial additive aracter v and suppose θ is osen as above.
Set ℓ = max {length(r) | r ∈ R} ∪ {1}. For any q ∈ Q that satisfies v(q) ≥ ℓ∥v∥, we have
Γv ∪ qΓ−v = Γ.

Proof. Like in the previous lemma, we get a region L bounded by  parallel hyperplanes
whi are separated by a distance of v(q)/∥v∥ ≥ ℓ ≥ 1. It is evident thatQv ∪ qQ−v = Q.
Now consider a path γ in the 1-skeleton given by a wordw of length length(w) ≤ ℓ. en if
w ever traverses a point a su that a /∈ Qv or a /∈ qQ−v , the whole path must be contained

³I anticipate that one can prove this in a more satisfying way. It seems like it should follow that if one cannot
move in the direction qϵ

i , then v1 = 0 whi contradicts our assumptions.
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in qQ−v or Qv respectively by our oice of q. us Γ1 ⊆ Γv ∪ qΓ−v . We furthermore
have all 2-cells (q, r) in Γv ∪ qΓ−v as length(∂(q, r)) ≤ ℓ by assumption. ◃▹

We wish to apply Van Kampen’s theorem to Γv , qΓ−v . We record the statement of Van
Kampen’s theorem as follows:

eorem ..: Let X be a path connected space, and suppose U = {Uα} is an open
cover of path connected sets su that finite intersections are still path connected and are
in U. Consider U as a category with morphisms given by inclusions of open sets. en
X = colimU, and furthermore π1(X) = π1(colimU) = colim(π1(U)). In the case with
two sets Uα, Uβ coveringX with intersection Uαβ we have π1(X) ∼= Gα ∗Gαβ

Gβ (where
π1(Uy) = Gy).

e subspaces Γv and qΓ−v are not open, but they are deformation retracts of slightly
larger open subspaces. us we have a push-out diagram

π1(Γv ∩ qΓ−v)
ι∗ //

ι∗

��

π1(Γv)

ι∗

��
π1(qΓ−v)

ι∗ // π1Γ = A

In particular, this says A is an amalgamated product. However, since A is Abelian, the
only way this can happen is if the amalgamated product is trivial, i.e. one of the factors
π1(Γv) or π1(qΓ−v) maps surjectively onto A. We prove this using the normal form theo-
rem found in [Lyndon, IV., p. ].

eorem ..: Consider the pushout diagram

H
ϕ1 //

ϕ2

��

K

��
L // L ∗H K.

We call a sequence c1, ..., cs, s ≥ 0 of elements of L ∗ K reduced if: ea ci is in either
L or K ; for all i, ci and ci+1 do not belong to the same factor; no ci belongs to imϕ1 or
imϕ2; if s = 1, c1 ̸= 1. en if c1, ..., cs is a reduced sequence then c1c2 · · · cs ̸= 1 in the
amalgamated product L ∗H K . ◃▹

us in our case, if neither factor was killed entirely, there would exist a ∈ π1(Γv) and
b ∈ π1(qΓ−v) whi are not in the subgroup we are amalgamating over. en a, b, a−1, b−1

is a reduced sequence; hence aba−1b−1 ̸= 1 in A whi contradicts A being Abelian. us
either ι∗ : π1(Γv) � A or ι∗ : π1(qΓ−v) � A.

In fact, for any additive aracter there is a sign ϵ = ±1 for whi ι∗ : π1(Γϵv) � A

is surjective. Suppose ι∗ : π1(qΓ−v) � A. en as π1(Γ−v, 1) ∼= π1(qΓ−v, q) = q ·
π1(Γ−v, 1) where the last equality follows by conjugation by the induced action of Q on
the fundamental groupoid Π(Γ). As the fundamental group does not depend on the oice
of a basepoint, we have a diagram
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π1(qΓ−v, 1)
ι∗ // A

π1(qΓ−v, q)

∼

OO

π1(Γ−v, 1)

∼ q·

OO ι∗

;;wwwwwwwwwwwwwwwwwwwwwww

whi is not necessarily commutative. Since ι∗π1(qΓ−v, 1) is conjugate to ι∗π1(Γ−v, 1) in
π1(Γ, 1) ∼= A, we conclude that ι∗ : π1(Γ−v, 1) � π1(Γ).

Now because of the Hurewicz natural transformation h : π1 → H1 we get a commuta-
tive diagram:

π1 (Γϵv)
π1ι // //

h

����

π1 (Γ) = A

∼ h

��
H1 (Γϵv)

H1ι // H1 (Γ) = A

that forces H1ι = ι∗ to be surjective. e homomorphism H1ι is also easily seen to be
Qϵv-linear. All we need to do now is prove the following lemma.

Lemma ..: For any non-trivial additive aracter v,H1 (Γv) is a finitely generatedQv-
module.

We show that Z1(Γv), i.e. the cycles in Γv , is finitely generated as a Qv-module. It is
clear that Z1(Γv) = Z1(∆v) ⊕ Z1(Ωv). e set {(1,m) |m ∈ M} is finite and generates
Z1(Ωv) = C1(Ωv) over Qv .

As H1(∆) = 0, the set

{∂(1, [ti, tj ]) | 1 ≤ i < j ≤ n} = {(1, ti) + (qi, tj) − (qj , ti) − (1, tj) | 1 ≤ i < j ≤ n}

generates Z1(∆) over Q. We may assume v(qi) ≥ 0 for all i, hence γi,j ∈ Z1(∆v). We
show that they indeed generate Z1(∆v) over Qv . Call V = ⟨γi,j⟩Qv .

Consider a cycle γ ∈ Z1(∆v). It has the form
∑
mq,j(q, tj) where the sum is over all

q ∈ Qv and satisfies
∑
mq,j∂(q, tj) = 0. From this, we deduce that∑

mq,j ((qqj , t1) − (q, t1)) = 0.

us

q1γ − γ =
∑

mq,j ((qq1, tj) − (q, tj))

=
∑

mq,j ((qq1, tj) − (qq1, t1) − (q, tj) + (q, t1))

=
∑

mq,jq ((1, t1) + (q1, tj) − (q1, t1) − (1, tj))

=
∑
j>1

mq,jqγ1,j ,
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hence q1γ−γ ∈ V ⊆ Z1(∆v). Applying the above computation to q1γ−γ yields q21γ−γ ∈
Z1(∆v). Inductively we see that for all m ∈ N the ain qm

1 γ − γ ∈ V ⊆ Z1(∆v).
Alternatively, γ =

∑
λi,jγi,j where λi,j ∈ ZQ. As there must exist i su that v(qi) > 0,

there is no loss of generality assuming v(q1) > 0. en as R is an Arimedean group, there
existsm su that v(qm

1 ) = mv(q1) ≥ −v(λi,j) for all 1 ≤ i < j ≤ n, i.e. v(qm
1 λi,j) ≥ 0.

Hence qm
1

∑
λi,jγi,j ∈ V , and qm

1 γ − γ ∈ V from whi we conclude γ ∈ V . us
V = Z1(∆v) is a finitely generated ZQv-module. With this, the theorem is proven. ◃▹

Remark ..: It is worth noting that the general idea of this proof can be used to show that
a metabelian group is FP2 if and only if it is finitely presented. e details of how to extend
the proof can be found in [Bieri], and the basic definitions of FPn can be found in [Brown,
§ VIII.]. It has recently been shown by Mladen Bestvina and Noel Brady [Bestvina] that
this is not the case for all groups. ey show that right-angled Artin groups satisfy FP2 but
are not finitely presented. For more details on this, see [Charney].

We proceed onward and complete the proof of the main theorem. We do not provide
the general proof of the remaining statement as a few computational difficulties arise whi
hinder the understanding of the main idea. We thus only prove the special case when the
extension is the split extension whi is formulated in the following theorem.

eorem ..: If A is a tame Q-module, then AoQ is finitely presented.
In order to proceed with the proof, we need to develop some notation for typography’s

sake. First off, the operation on the split extension A o Q is given by (a, q) ∗ (b, r) =(
a+ b · q−1, qr

)
because we have swited to the right Q-module A. We also denote for

general x, y in any group xy := y−1xy and [x, y] = x−1y−1xy.

Remark ..: We proceed under the assumption that Q ∼= Zn because of lemma , and
G = AoQ = Ao Zn.

Definition ..:

a.) A is a finite generating set of A;

b.) T := {t1, ..., tn} where ti = (0, ei) and {ei} is a free basis of Q ∼= Zn;

c.) F := F (T ) is the free group with generators from T ;

d.) F := {tm1
1 tm2

2 · · · tmn
n |mi ∈ Z} ⊆ F is the set of all ordered words in F ;

e.) ·̂ : F → Q defined by t̂i := ei;

f.) θ : Q→ Zn ⊆ Rn defined by θ (ei) := ei;

g.) Fm :=
{
s ∈ F | ∥θ (ŝ)∥ < m

}
;

h.) RQ := {[ti, tj ] | 1 ≤ i ≤ j ≤ n}

i.) Km :=
{
[a, bu] |u ∈ Fm, a, b ∈ A

}
;

j.) K∞ :=
{
[a, bu] |u ∈ F, a, b ∈ A

}
;

k.) As S (Q) = ΣA ∪ −ΣA =
∪

λ∈C(A) (Hλ ∪ −Hλ), and S (Q) is compact, we may
oose Λ ⊆ C (A) su that it is finite and S (Q) =

∪
λ∈Λ (Hλ ∪ −Hλ) holds;
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l.) CΛ :=
{
a−1

∏
u∈F

(
aλ(bu)u)

| a ∈ A, λ ∈ Λ
}
;

m.) Gm := ⟨A ∪ T |RQ ∪ CΛ ∪ Km⟩;

n.) G∞ := ⟨A ∪ T |RQ ∪ CΛ ∪ K∞⟩;

o.) A∞ := gpG∞
(A) ▹ G∞;

p.) For λ ∈ Λ define Lλ := {θ (q) | q ∈ supp (λ)} ∈ fRn

q.) F := {±Lλ |λ ∈ Λ} ∈ ffRn.

It is important to note that our oice in b.) is what simplifies the proof of the theorem.
In general, we can only pi an element of G whi projects onto the basis elements of Q,
and need to work a lile harder to get things to work out.

Our oice of Λ has the following interpretation: for every nonzero element x ∈ Rn,
there exists an element λ ∈ Λ su that either: for all v ∈ Hλ we have v (x) > 0, or for all
v ∈ Hλ we have −v (x) > 0.

Observation ..:

. A∞ =
⟨
au | a ∈ A, u ∈ F

⟩
=

{
αu |α ∈ A, u ∈ F

}
.

. A∞ ▹ G∞ and G∞/A∞ = ⟨T |RQ⟩, that is, G∞ is metabelian.

Proof. (eorem ) e proof of the theorem follows easily once we establish that there
exists some m0 > 0 su that Gm0 = G∞. Let us work under this assumption and defer
this result to lemma .

Define ψ : G∞ // //AoQ to be the homomorphism defined as the identity onA and
T . One can easily verify that ψ is a well defined homomorphism as all the images of all the
relations in G∞ are satisfied in A o Q. Note that kerπ ◦ ψ = A∞. us G∞/A∞ ∼= Q.
With this we conclude kerψ ⊆ A∞. As ZQ ∼= Z

[
x1, ..., xn, x

−1
1 , ..., x−1

n

]
we conclude

that ZQ is Noetherian from Hilbert’s Basis eorem. As kerψ is a ZQ-submodule of the
finitely generated ZQ-module A∞, we conclude that kerψ is finitely generated as a Q-
module because ZQ is Noetherian. We thus see that a finite generating set Y of kerψ as a
Q-module has normal closure inG∞ equal to kerψ as the conjugation action ofQ on kerψ
agrees with the given Q-module structure on A∞. at is, gpG∞

(Y) = kerψ. us

AoQ ∼= G∞/ gpG∞
(Y)

∼= ⟨A ∪ T | Y ∪ RQ ∪ Km0 ∪ CΛ⟩

whi is a finite presentation for AoQ.
◃▹

Lemma ..: ere existsm0 <∞ su that Gm0 = G∞.

Observation ..: e following relations hold for u, v, w ∈ G = AoQ:

. [u, vw] = [u,w] ([u, v]w);

. [uv,w] = ([u,w]v) [v, w];
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. [uw, v] =
[
u, vw−1

]w

.

Proof. From our previous considerations, it is clear that F satisfies the conditions of the
geometric lemma. us there exists a ρ0 > 0 and a function ε whi satisfy: Bρ+ε(ρ) can
be taken from Bρ by F for all ρ > ρ0. us we fixm0 > ρ0 and set l := ε (m0). us for
allm ≥ m0 the ball Bm+l can be taken from Bm by F .

We now show that ϕ : Gm+l
∼= Gm for all m ≥ m0 from whi it will follow induc-

tively that Gm0
∼= G∞. Define ϕ and ϕ−1 to be the identity on A and T . e map ϕ−1 is

clearly a homomorphism as all of the relations in Gm are in Gm+l.
In the following paragraphs, we show that ϕ is a homomorphism by showing that for all

s′ ∈ Fm+l \ Fm we have [a, bs
′
] = 1 in Gm.

By the Geometric Lemma, for every x ∈ Bm+l \ Bm there exists a λ ∈ Λ and a
sign ε = ±1 su that x + εLλ ⊆ Bm. Observe further that for s ∈ F , λ

(
ŝ
)
̸= 0 is

equivalent to θ
(
ŝ
)
∈ Lλ. Now let s′ ∈ Fm+l \ Fm. us we can interpret s′ in Rn via

θ
(
ŝ′

)
and apply the Geometric Lemma. ere thus exists a λ ∈ Λ and a sign ε su that

θ
(
ŝ′

)
+ εLλ ⊆ Bm. In other words, for ea q ∈ supp (λ), we have θ

(
ŝ′

)
+ εθ (q) ∈ Bm,

yet as θ is a homomorphism, we have θ
(
ŝ′qε

)
∈ Bm. us if λ

(
ŝ
)
̸= 0, the inclusion

reduces to θ
(
ŝ′ŝε

)
∈ Bm, and thus working moduloRQ in F , we conclude that s′sε ∈ Fm

mod RQ (this is another part where trouble arises in the general case).
In order to establish the equation [a, bs

′
] = 1 in Gm we first show:

’. if ε = 1 then [a,
(
bλ(bs)

)ss′

] = 1 in Gm;

’. if ε = −1 then [aλ(sbs), bs
′s−1

] = 1 in Gm.

Proof.

’. As s′s ∈ Fm we have [a, bs
′s] = 1 in Gm as it is a relation in Km. We compute using

the identities in Observation [
a,

(
bλ(bs)

)ss′]
=

[
a,

(
bss′

)(
bλ(bs)−1

)ss′]
=

[
a,

(
bλ(bs)−1

)ss′] [
a, bss′

](bλ(bs)−1)ss′

=
λ(bs)∏
i=1

[
a, bss′

](bλ(bs)−1)ss′

=
λ(bs)∏
i=1

1(bλ(bs)−1)ss′

= 1.
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’. We likewise compute with the aid of Observation [
aλ(bs), bs

′s−1
]

=
[
a, bs

′s−1
]aλ(bs)−1 [

aλ(bs)−1, bs
′s−1

]
=

λ(bs)∏
i=1

[
a, bs

′s−1
]n−i

=
λ(bs)∏
i=1

1an−i

= 1

◃▹

We now prove that the equation [a, bs
′
] = 1 is valid in Gm. We break the proof into

two parts: . when ϵ = 1; . when ϵ = −1.

. With ϵ = 1, and supp (λ) = {s1, ..., st} we compute[
a, bs

′
]

=

[
a,

t∏
i=1

(
bλ( bsi)

)sis
′
]

=
t−1∏
i=0

[
a,

(
bλ( dst−i)

)st−is
′]f(i)

= 1

where f (i) =
t∏

j=l+1−i

(
bλ( bsj)

)sjs′

and f (0) = 1. e description of f is not very

important and can be ignored as it is clear that some su function exists.

. With ϵ = −1, and supp (λ) = {s1, ..., st} we compute[
a, bs

′
]

=

[
t∏

i=1

(
aλ( bsi)

)si

, bs
′

]

=
t∏

i=1

[(
aλ( bsi)

)si

, bs
′
]g(i)

=
t∏

i=1

[
aλ( bsi), bs

′s−1
i

]sig(i)

=
t∏

i=1

1sig(i)

= 1

where g (i) =
t∏

j=i+1

(
aλ( bsj)

)sj . Again, the description of g is not important.

us all of the relations in Gm+l are satisfied in Gm from whi it follows that ϕ is a
homomorphism, and thus an isomorphism. A simple induction argument proves the claim
that Gm0 = G∞. ◃▹
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