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NONSINGULAR AFFINE /c*-SURFACES

JEAN RYNES

Abstract. Nonsingular affine 7c'-surfaces are classified as certain invariant

open subsets of projective A:'-surfaces. A graph is defined which is an equivari-

ant isomorphism invariant of an affine k* -surface. Over the complex numbers,

it is proved that the only acyclic affine surface which admits an effective action

of the group C* is C2 which admits only linear actions of C* .

Introduction

A rc*-surface is a nonsingular two dimensional variety over an algebraically

closed field k with an effective action of the algebraic group k* of units of k .
In this article, we classify affine 7c*-surfaces. If k = C, the field of complex

numbers, we prove the following.

Theorem A. The only acyclic affine C* -surface is C2 with a linear action of C*.

A fixed point x of a k*-surface X is called elliptic, hyperbolic or parabolic

depending on the linear action it induces on k2, i.e. the representation on the

tangent space TXX. If A is an affine k*-surface which possesses an elliptic

fixed point, then X is equivariantly isomorphic to TXX. This is an example

of a one-fixed-pointed action. Fixed-pointed actions are characterized in [KR]

and [BH]. We classify affine 7c*-surfaces without elliptic fixed points as follows.

Theorem B. The affine k*-surfaces without elliptic fixed points are precisely the

differences V - Y where

(1) V is a projective k*-surface without elliptic fixed points,
(2) Y is an invariant connected closed curve in V, and

(3) V - Y contains no invariant closed curve of V.

See (3.3) and (4.9) below. A pair (V, Y) satisfying (l)-(3) is called a C-pair.
In [OW], Orlik and Wagreich classify projective k*-surfaces. These are ob-

tained, by blowing up fixed points, from geometrically ruled k*-surfaces. An

affine k*-surface without elliptic fixed points can be embedded equivariantly in

a projective /c*-surface without elliptic fixed points. Orlik and Wagreich define

a graph for these projective surfaces. This graph is utilized to determine which

invariant open subsets are affine.

We also define a graph Y(X) for an affine A:*-surface without elliptic fixed

points. This graph is shown to be an invariant of the affine k*-surface X. In
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890 JEAN RYNES

fact, Y(X) is completely determined by the tangent space representations at

isolated (hyperbolic) fixed points, Seifert invariants of nontrivial closed orbits,

and the quotient space X/k*.

The paper is organized as follows.

In the first section we discuss generalities of algebraic group actions on vari-

eties. Results of [KR] and [BH] are interpreted to give a characterization of ac-

tions of k* on affine varieties admitting elliptic or parabolic fixed points. In §2,

we describe part of the Orlik-Wagreich classification of projective /c*-surfaces.

For the convenience of the reader, the graph Yy of a projective 7c*-surface V

without elliptic fixed points is defined and illustrated. We also prove that the

quotient 7Z : V —> V/k* exists for such V.
In §§3 and 4, C-pairs are discussed. The Orlik-Wagreich graph of V is

modified to define a graph for G-pairs. The form of the graph of a minimal G-

pair is determined in §3. This is used in §4 to characterize the affine /¿"-surfaces

without elliptic fixed points as differences V - Y, for C-pairs (V, Y).

The graph of Y(X) of an affine /c*-surface without elliptic fixed points is

defined in §5. We prove that Y(X) is an invariant of X.
In §6 we restrict our attention to surfaces over the complex numbers. A pro-

jective C*-surface V without elliptic fixed points is diffeomorphic to the con-

nected sum of n copies of (CP2) with the total space of a 2-sphere bundle over

a compact 2-manifold. There is a canonical isomorphism between H2(V;Z)

and Num V, the divisors on V modulo numerical equivalence. This is em-

ployed to compute the homology of an affine k*-surface from its graph. The

section ends with a proof of Theorem A.
Since the time of this research, the author has become aware of work of K.

Fieseler and L. Kaup on this subject. In [FK], the intersection homology of

singular, as well as nonsingular, C*-surfaces is computed. Theorem A could

also be deduced from these computations and results in §5 below.

1. Algebraic group actions on varieties

Throughout, k is an algebraically closed field of arbitrary characteristic. A

variety is an integral separated scheme of finite type over k . The group of units

in k is denoted k*.
We begin by recalling some basic definitions pertinent to the study of al-

gebraic transformation groups. The basic terminology follows that of [Hu].

Quotients of not necessarily affine varieties and 'fixed-pointed' actions of affine

varieties are also discussed.
An (affine) algebraic group G is an affine variety which is also a group such

that the group multiplication and inverse mappings are morphisms. An action

of 6 on a variety A is a morphism

GxX—*X ,   (g, x) >-* g • x

such that gx • (g2 • x) = (gxg2) • x and 1 • x = x, for all gx, g2 £ G and

x e X. If char k = 0, the isotropy subgroup of a point x £ X is the algebraic

subgroup Gx = {g £ G : g ■ x = x}. The action is effective if f)xex Gx — {1} ■

If char k = p > 0, the notion of isotropy subgroup is replaced by that of the

stabilizer subscheme of x , see [MF, p. 3]. A variety with an effective action of

G is called a G-variety. The subset Gx = {y £ X : g • x = y for some g £ G}

is called the orbit of x . The action induces a map o : G —* Gx , a (g) = g • x
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NONSINGULAR AFFINE k*-SURFACES 891

with 'kernel' Gx = {g £ G : a (g) = x} and thus a bijection G/Gx —> Gx . The

coset space G/Gx has the structure of an affine variety [Hu, IV]. This allows

us to view the orbit Gx as an affine variety. The fixed set of the action is the

closed subvariety XG = {x £ X : g • x = x for all g £ G} of X. A morphism

/:I->f is equivariant if f(g • x) = g • f(x) for all x £ X and g £ G.
A (rational) representation of an algebraic group G is a finite dimensional

vector space V together with a homomorphism G —> GL(F) which is a mor-

phism of varieties. An action on a vector space V is said to be linear if it is

given by a representation.

An algebraic group G is linearly reductive if every representation of G is

completely reducible. An example is the group k*. Also, if char/c = 0, all

finite groups are linearly reductive. If char/c = p > 0, a finite group H is

algebraic if and only if p \ \H\. Every linearly reductive group is reductive,

for the definition of reductive groups and an historical summary we refer the

reader to [MF, Appendix I].

Example (1.1). Finite dimensional representations of G = k*. Since G is lin-

early reductive every finite dimensional representation of G decomposes as the

direct sum of irreducible representations. The irreducible representations of

G = k* are the one dimensional representations / ■-> ta, for some integer a.

Thus, up to base change, every representation of G on an «-dimensional vector

space V has the form

//fl>     0     ...     0\

G^GL(F) ,    7^
0     Z0* :

: ■••     0
V 0    ...     0    ta"

for some integers ax,... , an.

This representation will be denoted V = tai + ■ ■ ■ + t"n. An alternate

decomposition of V is obtained as V = Vo © V+ © V~ , where Vo = YLa =oia> >

V+ = Za,>o <ai and V- = Ea,<0 /<" •

Representations occur naturally at fixed points. If X is an affine variety with

an action of an algebraic group G, then there is an action on the ring of regular

functions defined by (g • /)(x) = f(g~x • x) for g £ G and / £ (f(X). In
fact, with this action, cf (X) is an infinite dimensional representation of G [K,

II.2.4]. If x e XG and f £ mx , the maximal ideal of x, then g • f £ mx ,
i.e. the action restricts to mx . Thus, there is an induced action on (mx/mx),

and on its dual space (mx/m2x)* which is the tangent space TXX to X at x .

More generally, for arbitrary x £ X, this determines a representation of Gx

on TXX.

Definition (1.2). Let A be a variety with an action of G = k*. Then for

x £ XG, x is elliptic if TXX = (TXX)+ or TXX = (TXX)~, parabolic if x

is not elliptic and TXX = (TXX)° © (TXX)+ or TXX s (TxXf © (TXX)~ and

hyperbolic otherwise.

Example (1.3). G-vector bundles. A G-vector bundle is a vector bundle p : X —>

Y and an action of G on I which restricts to a linear action on each fiber.

Assume Y is connected and let p : X —> Y be a vector bundle of rank n over

Y. There is a covering {U¡}iejr of Y, isomorphisms 0, : p~x(U¡) —> U, x k"
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and transition functions y/iyj : U¡ n U¡ -> GL(k") so that X = U„,f (U¡ x k"),

i.e.   for each  i, j £ S,   u £  U, n Uj  and v £ kn, we have  (u,v) ~

(77, ipiyj(u)v).

Let 6 : G —> GL(k") be a representation. For ig,/, define an action of G

on {/, x /c" by g-(u,v) = (u, 9(g)v) for ail g e G and (77, v) £ ¡7, x /c" . In

order for this to define an action on X, for ail /, j £JF we must have

(t) (u, 0(g)y/iyj(u)v) = (u, ipiyj(u)6(g)v)

for each u £ UjCiUj , g e C and v £ kn .

One special case which will be of interest is that of k*-line bundles. If n = 1,

condition (f) is always satisfied. So the one dimensional representation of k*,

11-+ ta , determines an action on a line bundle p : X —> Y. Moreover, viewing

Y as the zero section of p and using (1.8) below, we see that for each y £ Y,
TyX = t° + ta .

Definition (1.4). The (categorical) quotient of a variety X by an action of an

algebraic group G is a variety Y together with a morphism % : X —> Y satis-
fying:

( 1 )   n(g • x) = n(x) for all x £ X and g £G.
(2) If ip : X —> Z is a morphism satisfying ip(g -x) = y/(x) for all x £ X

and g £ G, then there is a unique morphism cj) : Y —> Z, such that

cpo n = xp .

Whenever it does exist, the universal property of (2) guarantees that the

quotient it : X —► Y is unique up to isomorphism. The quotient variety Y is
denoted X/G. If X is affine, then X/G = Speccf(X)G .

It is convenient to have a geometric description of the quotient. We begin
with

Lemma (1.5). Let X be a variety with an action of an algebraic group G. Sup-

pose \p : X —> Z satisfies \p(g • x) = y/(x) for all x £ X and g £ G.

(1) If there is a chain of orbits Gx = Gx- , ... , Gxn = Gy such that Gx¡ n

Cx,+i ^ 0 for i'=l,... ,n-l then \p(x) = \p(y).
(2) If y/(x) = ip(y) implies that such a chain exists, and if there is a section

s : Z —► X, then ip : X —> Z is the quotient.

Proof. Since ip is continuous, for each z £ Z, ip~x(z) is closed in A. In

particular the closure of each orbit maps to a single point.

To prove (2), let s : Z -* X be a section. We need to verify that ip : X —>

Z satisfies the universal property (1.4)(2) above. Suppose tf> : X —► W is a

morphism such that 4>(g • x) = cp(x) for each g £ G and x £ X. Define f :

Z -> W to be the composition epos . For x e X, let x = y/(x) and y = s(x).

Then y/(x) = y/(y). So there is a chain of orbits Gx = Cx», ... , Gx„ = Gy

such that Gxi n Cx,+i ^ 0 for i = I, ... , n - 1. Thus /o ip(x) = f(x) =
4> o s(x) = <j)(y) = (f>(x) and / is unique with this property.   D

If X is an affine variety and G is reductive, the quotient n : X —► X/G does

exist [MF, p. 27]. In this case, for each z e X/G, n~x(z) contains a unique

closed orbit, and 7r(x) = 7r(y) if and only if Gx n Gy ^ 0 [BH, §1].
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Lemma (1.6). Let X be an affine variety with an action of a reductive group G.

If Z is a nonsingular curve and y/ : X —> Z is a surjective morphism such that

ip(x) = \p(y) if and only if Gx n Gy ̂  0, then tp : X -> Z is the quotient.

Proof. Let n : X —► X/G be the quotient. Then there is a unique morphism <j> :

X/G —> Z such that tfion = y/ . First we show that tf> is bijective. Surjectivity

is obvious. Suppose (p(x) = tp(y). Let x £ 7t_1(x) and y £ n~x(y). Then

\p(x) = 4> ° -t(x) = 4>(x) = (f>(y) = (j) o n(y) = \p(y), so Gx n Gy ^ 0 . But this
means x = 7t(x) = n(y) = y .

Let Y be a projective curve containing X/G such that each point of Y-X/G

is regular. Also let W be the unique nonsingular projective curve containing

Z. Since tj) is a bijective morphism of the affine curves X/G and Z, tj> defines

a birational map tf>' : Y —> IT7. Note </>' is defined at all but at most finitely

many points of Y, and each point at which tf>' is not defined is a regular point

of Y. Since W is nonsingular and projective there is a unique extension of

tj>' to a morphism tj) : Y ^> W, [HI, p. 43]. Since W is nonsingular, the

birational morphism cj> is an isomorphism.   D

Throughout the remainder of this section G = k* and A is a reduced affine

C-variety. If G acts fixed-pointedly on X (see below), then A is a G-vector

bundle over the fixed set XG . This result for algebraic tori is due to Kambayashi

and Russell [KR], see also Bass and Haboush [BH]. Our terminology follows that

of [BH].

Definition (1.7). Suppose X is a reduced affine variety. An action of a reductive
group G on A is fixed-pointed if the closure of each orbit contains a fixed point.
An action is one-fixed-pointed if it is fixed-pointed and there is exactly one fixed

point.

Remark. Fixed-pointedness is equivalent to the condition that the composition

XG <-+ X -^ X/G be an isomorphism, see [BH, 10.0].

From (1.1) we see that a (finite dimensional) representation V is fixed-
pointed if and only if V contains an elliptic or parabolic fixed point, and

V is one-fixed-pointed if and only if V contains an elliptic fixed point. The

following is a useful lemma relating fixed-pointedness of tangent space repre-

sentations to fixed-pointedness of X. We note that it is valid over fields of

arbitrary characteristic so long as the group in question is linearly reductive;
this is the case for k*.

Lemma (1.8) [Lu2, Lemme 1]. Let X be an affine variety with an action of a

linearly reductive group G. Suppose x £ X is a regular point which is fixed

by the action. Then there is an equivariant morphism F : X -* TXX such that

F(x) = 0 and F is étale.

A morphism is étale if it is smooth of relative dimension zero [HI, p. 275].

So a morphism as in (1.8) maps an open invariant neighborhood of x onto an

open invariant neighborhood of the origin in TxX, see [HI, III. Exercise 9.1].

The next proposition follows easily from results of Bass and Haboush [BH].

Proposition (1.9). Let X be a nonsingular affine variety with an action of G =

k*.
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(1) If X contains an elliptic fixed point x, then X is equivariantly isomor-

phic to the tangent space representation TXX and X/G is a point.

(2) If X contains a parabolic fixed point then n : X —» X/G is a G-vector

bundle and X/G is nonsingular.

Proof. For x £ XG, consider the commutative diagram

X    —í—>      TXX

X/G -Ä (TXX)/G

where F is the morphism of (1.8) and F/G is the induced morphism on

quotients.

If x is elliptic, we show that X is one-fixed-pointed. From [BH, 10.6] it

will then follow that X = TXX. Let U be a neighborhood of x such that

x £ Gy for y £ U. Since F is étale, V = F(U) is an open neighborhood of

0 in TXX. By (1.5), n(U) = n(x), so n~x(n(x)) is dense in X. Since n is

continuous, n~x(n(x)) is also closed in X. Thus n~x(n(x)) = X. But this

means x «—> A —» 7i(x) = A/G is an isomorphism. So A/G = {x} and X is

one-fixed-pointed.
Now suppose x is parabolic. Then TXX = (TXX)° + (TxX)e for e = + or

-, see (1.2). Thus TXX is fixed-pointed. Since cf(X) is an integral domain,

[BH, 11.3] implies X is fixed-pointed. Thus n : X —> X/G is a G-vector
bundle [BH, 10.3].

We now show that X/G is nonsingular. Let X e A/G and let x be the

unique fixed point in 7r~'(X). Since F is finite and étale at x, F/G is

étale at x [Lui, II. 1.1]. So it suffices to show that (TXX)/G is nonsingular

at F/G(x). But, since the action on X is fixed-pointed, so is the action on

TXX . Thus (TXX)/G = (TXX)G . The later is a linear subspace of TXX and

hence nonsingular.   D

The hyperbolic case remains to be studied. From (1.9) we see that any non-

singular affine k*-variety which contains a hyperbolic fixed point cannot contain

an elliptic or parabolic fixed point.

2. Projective surfaces with tc*-actions

A G-surface is a nonsingular two dimensional variety with an effective action

of an algebraic group G. Throughout G = k*, the multiplicative group of units

of an arbitrary fixed algebraically closed field k .

From (1.9) it follows that if X is an affine G-surface which contains an

elliptic fixed point x, then X = TXX = k2. If A contains no elliptic fixed

point, then we will embed X equivariantly into a projective G-surface without

elliptic fixed points, see (3.1) below. In this section we describe projective k*-

surfaces without elliptic fixed points. This is part of a broader classification due

to P. Orlik and P. Wagreich, see [OW].
If V is a projective G-surface, then VG is nonempty. Following [OW], we

describe the fixed set. For x £ VG , write TX V = 7a(x) -I- tb(x). Since the action
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is effective, not both a(x) and b(x) are zero. Set

F+(V) = {x£VG : a(x), b(x) > 0},

F-(V) = {x £ VG : a(x), b(x) < 0},   and

Fh(V) = {x£VG: a(x) > 0 > b(x) or a(x) < 0 < b(x)}.

When no confusion will arise we drop the V from the notation and write F+ ,

F_ and Fn. The points of F+ are called sources and those of F_ sinks of

the action. Sources and sinks are defined similarly on G-varieties of arbitrary

dimension. According to [B2], F+ and F- are nonempty distinct irreducible

components of VG. So, for e = +, -, either FE is a point, in which case it

is elliptic, or Fe is an irreducible curve, in which case it consists of parabolic

fixed points. Thus, dim F+ = dim F_ = 1 if and only if V contains no elliptic

fixed point. An orbit O of the G-action is called ordinary if O n F+ ^ 0 and

OilF- ^ 0. If O is an orbit which is not a fixed point and not ordinary, O

is called special.
We begin with an example. If p : S —> C is a geometrically ruled surface

which admits two nonintersecting sections,1 then S admits an action of k*.

The assumption that p : S —> C admits two nonintersecting sections is equiva-

lent to S = P(¿¡) where t\ is a decomposible rank 2 vector bundle over C [HI,

V. Exercise 2.2].

Example (2.1). Standard actions of k* on geometrically ruled surfaces: Let p :

3 —> C be a line bundle over a nonsingular projective curve C, and let 3~x

denote the inverse bundle (i.e. the bundle whose transition functions are the

inverses of those of 3?). As in (1.3), 3 and 3~x admit actions of G = k*

determined by the representations 71 and t~x respectively. In each case the

fixed set is the zero section. Write 3G = Co and (3~x)   = C«,.

Let / : 3 - Co -» 3~ ' - C-» be the map defined locally bv (u, x)£\Jxk^>
(u, x_1) £ U x k. It is straightforward to check that / is an equivariant

isomorphism. Form S = 3 li/3~x, the glueing of 3 and 3~x along f.

Then p : 3 -» C extends to p : S -> C and p_1(c) = P1 for each ceC.

Thus S is a geometrically ruled surface with an action of G.

The fixed set is SG = Co U C«,. From (1.3) we see that, for x £ Co, resp.

Coo , TXS ̂ t° + tx, resp. 7° + r1 . So F+(S) = C0 and F-{S) = Cx . Also,

F+(S)2 = -(F-(S))2 = d for some d £ Z. Incidentally, c/, resp. -if, is

the degree of 3, resp. 3~x , as a line bundle. An orbit O of S which

is not a fixed point is an orbit of each of 3 and 3~x , so O n F+(S) ^ 0

and OnF_(5') ^ 0. Thus each (nonfixed) orbit of S is ordinary. The map

p : S ^ C satisfies p(x) = p(y) if and only if there is a z such that x, y e Gz .

Since there is an obvious section, (1.6) implies p : S —> C is the quotient.

This will be called the standard action of G on S.

Suppose x is a fixed point of a G-surface V, and let <p : V -> V be the

blow up at x . Then there is a unique action of 6 on K extending the action

on V - <p~x(x) = V - x , see [OW, 3.4] for an explicit description. In this case

we call tf> : V —► V the equivariant blow up of V at x .

'In [OW], p : 5 -» C is called a P1 bundle over C .
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If E = P1 is a curve in a G-surface V with E • E = -1, then E is
invariant [OW, 1.9]. Thus E is the exceptional curve of an equivariant blow

up <j>:V—>V. The process of passing from K to F is called blowing down.

Lemma (2.2). Let V be a projective G-surface without elliptic Jbced points. Sup-

pose

(1) the quotient n : V —► V/G exists,
(2) there is a section s : V/G —> V which maps V/G isomorphically onto

F+(V), and
(3) whenever n(x) = n(y), there is a chain Gx = Gx», ... , Gx„ = Gy of

orbits such that Gx, n Gx,+i ^ 0.

If <j> : V —> V is the blow up of some P £ VG then the quotient ñ : V —► V/G

exists, V/G = V/G and ñ = n o <p. Moreover, (2) and (3) are also satisfied

for ñ:V -» V/G.

Proof. Set ñ = n o tp. Then there is a section s : V/G -> V of À given

by the composition of 5 with the proper transform F+(V) of F+(V) in V.

Since ^(F) is nonsingular there is such a section, and, since 4> is equivariant,

F~4V)*F+(V).
Now suppose 7t(x) = ñ(y). We show there is a chain Gx = Gx-, ... , Gxn =

Gy of orbits such that Gx, n Gx,+- ^ 0. Then applying (1.5) we see that

ñ = n o (j) : V —► V/G is the quotient. Let E be the exceptional curve of <f>.

Set z = tj>(E), x' = 4>(x) and y' = tf>(y).

Case 1. x' = y'. In this case, x and y are both in i?. Let x2 £ E be

a nonfixed point. Then Gx = Gxi , Gx2, GX3 = Gy is a chain satisfying

Gx¡ n Gx,+i t¿ 0 .

Cos«? 2. x' 7¿ y'. Let Gx' = Gx{, ... , Gx^ = Gy' be a chain of orbits of V

satisfying Gx, n Gx,+i / 0 . If some Gx- is a fixed point, then Gx[ € Gx'¡_l n

Gx-+1, and the chain obtained by deleting Gx\ also satistfies the intersection

property. So assume no Gx\ is a fixed point. Set x, = (/>_1(x;'). If z £

U/Li G-*,' • tnen G-* — ̂ 1 • ••• • G*n - Gy is the required chain. If z e

U"_, Gx¡, then z = Gx, n Gx,+i for some i. Setting O = E - EG , we see that

the required chain is

Gx = Gxi, ... , Gx,, O, Gx,+i, ... , Gx„ = Gy.   D

Definition (2.3) [OW, 2.4]. Let V be a projective G-surface without elliptic fixed

points so that dimF+ = dimF_ = 1 . The weighted graph Y(V) is defined as
follows:

(1) Vertices of Y(V) are v+ , w_ for the curves F+ , F- and one vertex

for each special orbit of V .
(2) Two vertices v and w are linked in Y(V) if the closures of the corre-

sponding curves intersect.
(3) Each vertex is assigned a weight which is the self-intersection number

of the closure of the corresponding curve.

Let F be a projective G-surface without elliptic fixed points. By convention,

the vertex v+ corresponding to F+ will be to the left of the vertex v- cor-

responding to F_ . Suppose V contains special orbits Ox, ... , Os such that
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O, n Oi+x ¿ 0 for 7 = 1,... , S - I and O, n 0¡■ = 0 for y =£ i - 1, i, i + 1.
Then there is a subgraph 38 of T(K) which has S vertices Vx, ... , vs such

that (v¡, vi+i) is an edge of 38 for i=l,... , S—l. If in addition (v+, «i)
and (u_ , us) are edges of Y(V), then we call 38 a branch of T(F). The orbits

Ox, ... ,Os are called the orbits of 38 .

Example (2.4). (a) Let p: S —> C be a geometrically ruled surface with a stan-

dard action of G. Suppose (F+)2 = d . From (2.1) it is evident that Y(S) has

the form:
d -d

Now suppose O is an ordinary orbit of S. Let x £ F+r\0 and let tj) : V —* S

be the blow up of S at x. Set E = 4>~x(x). Then F is a projective G-surface

with exactly two special orbits, Ox = E - EG and 02 = 4>~x(0). Since O is a

fiber of p , (Ö)2 = 0. Thus Y(V) has the form

d-l       -1       -1       -d
•-•-•-•

Also by (2.1) and (2.2) the quotient n : V —> V/G exists and n = p o <j>.
(b) Let Z be a projective G-surface without elliptic fixed points and suppose

Y(Z) has a branch 38 of the form

fi       H           In-\       -1       fjv+i            h-\       h
•-•    • • •       •-•-•      • • •       •-•

Let Ox, ... ,Os be the orbits of 38 . Then (On)2 = -1, so On is the excep-
tional curve of a blow up $ : Z —> Z'. Then the corresponding branch of Z'

has the form

fi       h In-2       In-\ + I       In+\ + I       In+2 -fs-i       Is
»        »    • • •      •-•-•-•      • • •      •-•

(c) Let p : S —> P1 be a geometrically ruled surface over the projective line.

Suppose (F+)2 = 1 . Then (F-)2 = -1 and F- is the exceptional curve of a

blow up tp : S -> S'. It is easy to see that S' = P2. Also, using (1.8), we see
that the isolated fixed point x = <t>(F_) is an elliptic sink of the action.

Suppose C is a nonsingular curve. We say F is a ruled surface over C if

V is birationally equivalent to C x P1. Unless V = P2, this means there is a

geometrically ruled surface p: S —> C and a morphism tj>: V -» S such that tp

is a finite composition of blow ups. In this case, the composition \p = p o <f> :

V —» C is called a ruling of V . For a given ruling 1// : F —► C, the fiber over a

point x £ C, denoted y/x , is the preimage >p~x(x). Evidently, each fiber is a

connected curve whose irreducible components are each isomorphic to P1.

Theorem (2.5) [OW, 2.5] (Orlik-Wagreich). Let V be a projective G-surface

without elliptic fixed points. Then there is a geometrically ruled surface p : S —>

F+(V) with a standard action of G and a finite sequence of blow ups at fixed

points tj> : V —> S, so that xp = p o </> : V —> F+ is a ruling of V. Moreover, if

ipx = \JjLx Cj is the decomposition of the fiber over x £ F+(V) into irreducible

components, then we have the following.

(1)   Sx = 1 if and only if y/x is the closure of an ordinary orbit of V.
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(2) If Sx > 2, then Cx, ... , Csx are the closures of the special orbits of a

branch ofY(V).
(3) The graph Y(V) has the form

for some integers c+ , c_ and I'¡ satisfying Ij < 0 for all i and j, and

for each i there is a j with 7! = -1.

Corollary (2.6). Let V be a projective G-surface without elliptic fixed points.

Then the quotient n: V —> V/G exists. Moreover, n = p o $ where p: S —>

F+(V) is a geometrically ruled surface with a standard action of G, and tf> :

V —> S is a sequence of blow ups at fixed points.

Proof. This follows from (2.5) and (2.1) upon repeated applications of (2.2).   D

Corollary (2.7). Suppose V is a projective G-surface without elliptic fixed points

and O is an orbit of V, then 0-0 = 0 if and only if O is an ordinary orbit.

Proof. This is immediate from (2.5)(1) and (2.5)(3).   D

3.   G-PAIRS

Throughout G = k*. In view of the classification of projective G-surfaces,
we study affine G-surfaces via embeddings into projectives, see (3.1) below.
Then G-pairs are defined and it is proved that every affine G-surface without

elliptic fixed points is V - Y for some (minimal) G-pair ( V, Y). The graphs

of G-pairs are defined, and the form of the graph of a 'minimal' G-pair is

determined.

Proposition (3.1). If X is a nonsingular affine G-surface without elliptic fixed

points, then there is a projective G-surface V without elliptic fixed points and

an invariant subvariety Y c V, such that X = V - Y as G-surfaces.

Proof. By the equivariant compactification theorem of Sumihiro [S], one can

embed X equivariantly in a complete two dimensional G-variety V0. Iden-

tifying X with its image in Vq , set Y0 = V0 - X and En = sing(F0) U {x e

VQG : x is elliptic} . Note that Zn c To since X is nonsingular and contains no

elliptic fixed point.

The canonical equivariant resolution of Vq [OW, 3.2] is a complete nonsin-

gular G-surface V without elliptic fixed points and an equivariant morphism

77 : V —> Vq satisfying n\v_n-\(Zo) '■ V - 7r-1(In) —» V0 - In is an isomorphism.

Since V is complete and nonsingular, V is projective. Set T = 7r~1(To)» Then

Y is invariant and X = V0 - Y0 = V - Y .   D

Definition (3.2). A pair (V, Y) is called a G-pair if

(1)   V is a nonsingular projective G-surface without elliptic fixed points.
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(2) T is an invariant connected closed curve of V .
(3) Every invariant closed curve of V meets Y.

Remarks. Since Y is invariant and each component has dimension one, Y

consists of some union of fixed curves and closures of ordinary and special

orbits of V. Also, since the closure of each ordinary orbit of V meets F+ and

F- , Y must contain at least one of F+ or F_ .

Let (V, Y) be a G-pair and suppose E is an exceptional curve of V which

is contained in Y. Then E is the exceptional curve of an equivariant blow up

(f) : V ^ V . Set Y' = tj>(Y). The tangential representation at the fixed point

(j>(E) determines the action on E according to [OW, 3.4], this is independent

of the type (i.e. elliptic, parabolic or hyperbolic) of the fixed point t/>(E). From

this it follows that tj>(E) is an elliptic fixed point if and only if E is pointwise

fixed. Also V-Y = V'-Y', so (V, Y) satisfies (3.2)(3) if and only if (V, T)
does. Thus (V, Y') is a G-pair if and only if E is not pointwise fixed. We

say (V, Y) is minimal if Y contains no exceptional curve E, unless E is

pointwise fixed.

Proposition (3.3). Let X be an affine G-surface without elliptic fixed points.

There is a minimal G-pair (V, Y) such that X = V - Y as G-surfaces.

Proof. Let V and y be as in (3.1) so that X s V- Y. Since X is affine, Y is
connected and has pure codimension one, see [H2, H.3.1] and [H2, II.6.2]. Also,
X cannot contain a closed curve of V. Thus (V, Y) isa G-pair. If (V, Y) is

minimal, we are done. Otherwise there is an exceptional curve Ex c Y which

is not fixed. Let </>• : V —> Vx be the blow down and set Yx = 4>x(Y). Note

that (V\,Y{) is a G-pair and X = V - Y = Vx - Yx. Since Ex is not fixed and
Ex • Ex = -I, (2.7) implies Ex is the closure of a special orbit. Thus Vx has

one fewer special orbit than V.

Repeating this process, one obtains a sequence {(^, Y,)} of G-pairs such

that X = V¡ - F, and Vi+X has one fewer special orbit than V¡. But V has

only finitely many special orbits by (2.5). Thus (V„ , Y„) is minimal for some

n.   D

Definition (3.4). For any G-pair (V, Y) the graph Y(V, Y) is defined as fol-
lows:

(1) The vertices of Y(V, Y) are the vertices of Y(V), see (2.3), together

with one vertex for each ordinary orbit of V which is contained in Y.

Vertices whose corresponding curves are contained in Y are indicated

with an open dot ( o ). All others are indicated with a closed dot ( • ).

(2) Two vertices are linked by an edge in Y( V, Y) if the closures of the

corresponding curves intersect.

(3) Each vertex is assigned a weight which is the self-intersection number

of the closure of the corresponding curve.

Suppose (V, Y) is a G-pair. A vertex of Y(V, Y) or Y(V) will be called
fixed (resp. ordinary, special) if the corresponding curve is fixed (resp. ordinary,

special). Note that there is a one to one correspondence between the special

vertices of T(V) and the special vertices of Y(V, Y). A branch of Y(V, Y)

is a subgraph which corresponds to a branch of Y(V). If 38 is a branch of

Y(V, Y), we write 38(V) for the corresponding branch of Y(V). The orbits
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of a branch 38 of Y(V, Y) are the orbits of 38 (V). The length of a branch
38 is the number of orbits (or equivalently the number of vertices) of 38 .

If (V, Y) is a minimal G-pair, the forms of the branches of Y(V, Y) are

determined in (3.6) below. First we need the following.

Lemma (3.5). Let V be a projective G-surface without elliptic fixed points. Sup-

pose 38 is a branch ofY(V) of the form

I\       h Is-\       h

Then the following hold.

(1) 38 contains two adjacent vertices of weight -1 if and only if S = 2.

(2) If Ij = -1 for 7 = 1 or S, then I¡ = -1 for some I ^ j.

Proof. Let Ox, ... , Os be the orbits of 38, so that (Oj)2 = Ij. To prove

(1), first suppose S = 2. Then by (2.5)(3), at least one of (Oi)2 = -1 or

(02)2 = -1. Assume without loss of generality that (6>i)2 = -1, and let

(j) : V -> V be the blowing down of Ox» Then ^(Of) is an ordinary orbit

of V. Thus (^(Of))2 = 0 and (Öx)2 = (0~2)2 = -1. To prove the converse,

suppose (Ok)2 = (Ok+x)2 = -1 and let <f> : V —> V be the blowing down of

Ok . Then (4>(Ok+x))2 = 0. By (2.7) this means <j>(Ok+x) is an ordinary orbit

of V . So S = 2.
The second assertion is proved by induction on S. If S = 2, the statement

is proved. Suppose S_> 3 and Ix = -1. The proof in the case Is = -I is sim-

ilar. Blowing down Ox we get a projective G-surface V whose corresponding

branch 38' has the form

12 + 1 ^3 fs-l Is

Since at least one of the weights of 38' is -1 , the induction hypothesis implies

Ij■ = -1 for some j > 3 .   D

Lemma (3.6). Let (V, Y) be a minimal G-pair. If 38 is a branch of Y(V, Y)
of length S = 2 then 38 has the form

(1)
-1       -1

•-•

If 38 is a branch ofY(V, Y) of length S > 3 then 38 is one of the following:

(2)

fi       h In-í       -I       In+\       In+2 Is-\       Is
o-o      ••• o-•-• o        ••• o-o   '

(3)

fi       h In-2       In-\       -1       f/v+i h-\       h
o-o      • ■ • o-•-•-o        ■ ■ • o o   '

(4)

h       h In-\       -l       In+\ h-\       h
o-o

where in (2), (3) and (4), l¡ < -2 for j ¿ N and 1 < A < S.
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Proof. If the length of 38 is two, then by (3.5)(1) the weights are both -
Minimality implies the the corresponding curves are not contained in Y.

Suppose the length of 38 is S > 3.  Let Ox, ... , Os be the orbits of
and let

h       h Is-i       Is

be the corresponding branch of Y(V), so that (Oj)2 = Ij.

Since Y is connected and Y contains at least one of F+ or F- , if O,,, ... ,

Oi, are the orbits which are not contained in Y, then {0,-,,..., 0¡,} = {0\,...,

Ok+i) for some k = I, ... , S - I. Also , since the closure of each orbit meets

Y, Y contains all but at most two adjacent orbits Ok and Ok+x of 38 . Let

A be such that In = -1, this is possible by (2.5)(3). Minimality of (V, Y)
implies On <£ Y. Now, if Y contains all but exactly one orbit of 38, then

38 has the form (4). If neither Ok nor Ok+x is contained in Y, then either

k = N and 38 has form (2) or k = N-l and 38 has form (3).
To show that 1 < N < S, suppose to the contrary that /•■ = -1 for j = 1 or

S. Then, by (3.5)(2), I¡ = -1 for some / ^ j . Minimality of (V, Y) implies
neither Oj nor 0¡ is contained in Y. But then Oj and 0¡ are adjacent orbits

with (Öj)2 = (Ö,)2 = -1. By (3.5)(1) this is only possible if S = 2.   O

If the closures of orbits intersect, they intersect in a fixed point. Thus the

branches of (3.6)(1), (2) and (3) correspond to a fixed point of V - Y. On

the other hand, the Ath orbit of the branch (3.6)(4) is closed in V - Y. This
motivates

Definition (3.7). Let (V, Y) be a G-pair and let 38 be a branch of Y(V, Y).
We say 38 is of type 3 if 38 has the form

fi       h In-\       In       In+i       In+2 h-\       h

where 1 < A < S. We say 38 is of type W if 38 has the form:

fi       h In-i       In      In+\ Is-i       Is

where 1 < A < S.

Proposition (3.8). Let (V, Y) be a G-pair. Set X = V - Y. If dim XG = I,

then X is affine, X/G is a nonsingular affine curve isomorphic to XG, and

n : X —► X/G has the structure of a G-line bundle. Moreover, V/G is the unique

nonsingular projective curve containing X/G. And, if (V, Y) is minimal, then

Y(V,Y) is

0 0

1) c / \ \-c or (2)

where c is some integer, and, in each case, the number of ordinary vertices is

\V/G-X/G\.
Proof. As in the proof of (3.3), after blowing down exceptional curves of V

which are contained in Y and are not fixed, we may assume (V, Y) is minimal.
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As remarked after (3.2), Y contains at least one of F+ or F- . Since

dim XG = 1, Y contains exactly one of the fixed curves F+ or F_. We

will show that if F_ c Y and F+<£ Y, then Y(V, Y) has form (1). A similar
proof shows that, if F_ £ Y and F+cY, then Y(V, Y) has form (2). Con-
nectedness of Y implies that T(V, Y) cannot contain a branch of the form

(3.6)(2) for 1 < A < S, (3.6)(4) for I < N < S, or of the form (3.6)(3) for
2 < N < S. Since the closure of each orbit must meet Y, Y(V, Y) cannot

contain a branch of the form (3.6)(1), or of the form (3.6)(3) for A = 2 . Thus

T( V, Y) contains no branches. But, Y contains at least one point of F+ . Thus

Y contains at least one ordinary orbit of V. Let {0¡}fíl be the ordinary orbits

of V contained in Y. Then T( V, Y) has the form

for some integers /•, ... , Im , c and c'. By (2.7), /• = ■■■ = IM = 0. Also,

since V has no special orbits, F is a geometrically ruled surface over F+ with

a standard action of G. It follows from (2.1 ) that c' = -c.

Set x, = O, n F+. Then XG = F+ - {x,}^, , which is a nonsingular affine

curve. Let n : V -> F+ = V/G be the quotient (2.1). Then n\x : X ^ XG

has the structure of a G-line bundle over XG. In particular, X is affine.

Since n\x(x) = n\x(y) if and only if Gx n Gy ^ 0, from (1.6) it follows that

n\x : X -> XG is the quotient.   D

Proposition (3.9). Let (V, Y) be a minimal G-pair. Set X = V -Y. If XG is
finite or empty, then each fixed point of X is hyperbolic, and T(V, Y) has the

form

•1 rl rl rl rl rl rl rl
1 i2 iM1-l 1Ml iM, + l JM1+2 1Rx-\ 1R1

where the branches and weights are as follows.
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(1) There are K > 0 branches of type 3. For each i = l, ... , K, either

R,■ = 2, in which case I[ = I- = -l, or R¡ > 3 and there is exactly one

m with I'm = — 1. Moreover, if R¡ > 3 and I'm = -I, then m = Af, or

Mi+x, I < m < Ri, and I'k < -2 for k ^ m .
(2) There are L>0 branches of type W. For each j = I, ... , L, Sj> 3,

ji = -1, 1 < Nj < Sj, and JJ < -2 for l ¿ N} .
(3) There are M > 1 ordinary orbits in Y, and Wx = ■■■ = WM = 0.
(4) c + c' = -(K + L).

Proof. Since V contains no elliptic fixed points, neither does X. Since XG is

finite or empty, F+, F_ c Y. So X contains no parabolic fixed points. Thus,

each fixed point of X is hyperbolic.
By (3.6) each branch of Y(V, Y) has type 3 or ^. Let K be the number of

branches of type 3, L the number of branches of type W, and Af the number

of ordinary vertices of T( V, Y). Certainly, K > 0 and L > 0. The conditions

on the weights along these branches follow from (3.6). Connectedness of Y

implies Af > 1, and, by (2.7), Wx = ■ ■ ■ = WM = 0.
It remains to show c + c' = -(K + L). By (2.5), V is obtained from a

geometrically ruled surface S with a standard action of G, by a sequence of

blow ups at fixed points. Let

v=VnJ^Vn_1^...^ViJl+Vo = s

be such a sequence. Also, let b¡ be the number of branches of Y(V¡). The

proof is by induction on A. If A = 0, then b0 = 0 = F+(S)2 + F-(S)2. Let
x be the fixed point which is the center of the /th blow up tp¡ : V¡ —> V¡_ • .

Set f¡_x, resp. f , to be the fiber of the ruled surface V¡_x, resp. V¡, which

contains x, resp. 4>~x(x). A priori, there are three possibilities:

(1) //_] is irreducible and x £ F+(Vt_x)\J F-(Vt_x),
(2) fi_ i is reducible and x 0 F+ ( Vt_ • ) U F_ ( V¡_ • ), or
(3) //_, is reducible and x 6 F+ (V¡_, ) U F- ( V¡_, ).

In the first case, // has two components, whereas //_• has only one. So fi

corresponds to a new branch in Y(V¡). Thus, -b¡ = -¿>/_i - 1 = F+(V¡_X)2 +

F-(V¡_X)2 - 1 = F+(V¡)2 + F-(Vi)2, where the second equality follows from

the induction hypothesis. In the second case, x must be a double point of

//_i. So the blow up introduces no new branches in Y(V¡). Here the induction

hypothesis implies

-b, =-b,_x = F+(Vi_x)2 + F.(V,^X)2 = F+(V,)2 + F.(V¡)2 .

We show that the third case cannot occur. Suppose fi_x is reducible, and

consider the branch of Y(V¡_X) corresponding to fi_x :

h       h Is-i       Is
•-•    • • •      •-•

If x £ F+(V¡_x), then the corresponding branch of Y(V¡) is

-1    /i-l       h Is-i       Is
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Since Ix < O, (3.5)(2) implies I¡■ = -1 for some j = 2, ... , S. But this is
impossible, since the corresponding branch of T(V) has a unique exceptional

curve. Similarly, we obtain a contradiction if x e F-(V¡_X).   D

4. Affineness of G-PAIRS

Let (V ,Y) be a G-pair and set X = V - Y. We say that (V, Y) is affine,
if X is affine. In this section, we show that all G-pairs are affine. In view of

(3.8), we assume XG is finite or empty; so that XG c Fh(V). If x £ XG we

construct new G-pairs from (V, Y) by blowing up x and modifying the curve

Y . The pairs thus obtained will be affine (minimal) whenever (V, Y) is affine

(minimal). We will need a numerical criterion for affineness which we prove

now.

Proposition (4.1). Let V be a G-surface without elliptic fixed points. Suppose

Y is an invariant connected subvariety of V. Then V - Y is affine if and only

if there is an effective divisor D with supp(Z)) = Y such that D • D > 0 and

D • C > 0 for each invariant irreducible complete curve C of V.

Proof. Goodman's criterion for affineness [H2, II.4.2] says an open subset of

a projective surface is affine if and only if the difference is the support of an

effective ample divisor. A divisor D on a surface is ample if and only if D2 > 0

and D • H > 0 for all irreducible complete curves H c V . This is the Nakai-
Moisezon criterion for ampleness, see [H2, p. 365]. ( => ) follows immediately.

Suppose D is an effective divisor of V with supp(Z)) = Y such that D-D >

0 and D • C > 0 for each invariant irreducible complete curve C of V. Let

H be an irreducible complete curve in V which is not invariant. For (<=),

we need only show that D • H > 0. Since H is not invariant, H <£ Y . Thus

H • F, > 0 for each irreducible component F¡ of Y and it suffices to show that

HnY¿0.
Let n : V —> V/G be the quotient map. We will show that

(1) H<ln-x(p)^0 for each pe V/G.

(2) n~x(p) C Y, for some p £ V/G.

Consider the restriction 7i\h '■ H —> V/G. This is a morphism of projective

curves and as such ti\h is either surjective or the image is a point, see [HI,

II.6.8].2 Since H is not invariant, we must have k\h(H) = V/G. So H n

n~x(p) t-- 0 for each p £ V/G.
To prove (2), note that there is some ordinary orbit O which is not contained

in Y. Write D = 5Z«,A + n+F+ + n-F- , where the D, are prime divisors

different from F+ and .F_ . Then 0 < D-0 = n+F+-0 +n-F- -Ö = n+ + n-.
So at least one of the fixed curves F+ or F_ is contained in Y. Assume,

without loss of generality, that F+ c Y. Then D • F_ > 0, so f n f_ / 0 .
Connectedness of Y implies there are invariant curves Cx, ... , Cn such that

F+ n Cx t¿ 0 , C, n C,+1 / 0 for /=1,... , n - 1 and C„ n F_ / 0 . Note that
the union of these curves maps to a single point P £ V/G and n~x(P) = (J(- C,.

So Y contains n~x(P).   O

2The nonsingularity of X in the statement of [HI, II.6.8] is not used to prove this assertion.
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Lemma (4.2). Let (V, Y) be a G-pair and suppose Y(V, Y) has the form

Then Ij = -1 and V - Y is affine.

Proof. By (3.5)(1), /j = -1 . Let O be the ordinary orbit of V which is

contained in Y. Set 77 = max(\F2\, \F2\) + 1 and D = F+ + no + F- .

It's easy to verify that D2 > 0 and D • C > 0 for each invariant irreducible

complete curve of V. So (4.1) implies V - Y is affine.   D

This provides us with a large class of affine surfaces with hyperbolic fixed

points. In fact, if Y(V, Y) is as in (4.2), V—Y has R fixed points xx, ... , xr,

where x; = C\ n C{ and Cj is the closure of the orbit corresponding to the

vertex vj with (C/)2 = // .

Lemma (4.3) (and definition of 0+, Ox , C+ and Cx ). Let V be a projective

G-surface and suppose x £ F„(V). Then there are unique orbits Ox and 0~

such that C+ n C~ = {x}, x is a source of C+ and x is a sink of C~ , where

Proof. Write Tx V = t~a + tb for positive integers a and b. Set Lc to be

the one dimensional subrepresentation (TxV)e for e e {+,—}. Let U be

an invariant affine open neighborhood of x , such a neighborhood exists by [S,

Corollary 2]. Let F: U —> TXU = TXV be the equivariant étale morphism such

that F(x) = 0 from (1.8). Then F maps an invariant open neighborhood

W of x bijectively onto an invariant open neighborhood F(W) of 0. Set

He = F~x(Le) n W . Then x £ H€, and, since F is equivariant, x is a source

of H+ and a sink of H- .SetOex = HE- {x) .   D

Now let <j> : Vx -> V be the blow up at x . For C c V, let C = <p-x(C -x)
denote the proper transform.

Definition (4.4). The plus, resp. minus, blow up of (V, Y) at x is the pair

Bex(V, Y) = (Vx , Y U Q) for e = +, resp.  - .

Example (4.5). Suppose (V, Y) is a G-pair whose graph has the form of (4.2)

with R = 1 . Then, // = l\ = -1. Let x = C- n C2, where C, = O, and
Ox, 02 are the orbits of the unique branch of Y(V, Y). Note that Cx = C~

and C2 = C+ . Then T(VX, Y u C") has the form

-2       -1       -2
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And, Y(Vx,YuC+) has the form

-2       -1       -2

This illustrates the effect of plus and minus blow ups on the graph of a G-pair.

It is also not difficult to determine, from Y(V, Y), when (V, Y) is BX(V, Y')
for some G-pair (V, Y') and hyperbolic fixed point x £ V - Y'. In fact, we

shall see that this occurs precisely when Y(V, Y) has a branch of type 3 with

length S>3.

Lemma (4.6). Let (V, Y) be a G-pair and suppose x is a hyperbolic fixed point

of V - Y. Then, for e £ {+, -} we have:

(1) BX(V, Y) isa G-pair.

(2) If(V, Y) is affine so is BX(V, Y).
(3) (V, Y) is minimal if and only if BX(V, Y) is minimal.

Proof. First, Y is connected and YP\Cx^0 implies YliCx is also connected.

If H is an irreducible complete curve of Vx , either H = C for some irreducible

complete curve C of V or H = Ex the exceptional curve of tf> : Vx —> V.

In the first case^C n T" ?-. 0 , so Cn?^0. If H' = Ex , HV\CX¿ 0 . It is

clear that Y U Q is invariant and closed, and that Vx contains no elliptic fixed

point. This proves that BX(V, Y) is a G-pair.
Now suppose (V, Y) is affine. By (4.1) there is an effective divisor D with

supp(D) = Y such that D2 > 0 and D • C > 0 for each invariant irreducible

curve C of V. Set H = Cx and letji = \H2\ + 1. Then D' = nD + H is

an effective divisor with support Y n Cx . Computing intersection numbers we

have:

D' ■ D' = n2D2 + 2nD • H + H2

>n2D2 + 2n + H2 >0,

D' ■ H = nD • H + H2 > n + H2 > 0,

D' • Ex = nD • Ex + H • Ex = 1.

If F is a complete invariant irreducible curve of Vx different from H and Ex

then F = C for some complete invariant irreducible curve C of V and

D' ■ F = nD ■ F + H ■ F > nD • C > 0.

For (3) write Y = U,-.F¿, where the F¡ are the irreducible components of

Y. Then since x e V - Y, F2 = (F¡)2 for all i. Thus F¡ is an exceptional

curve of V if and only if F i is an exceptional curve of V. This proves (=>).

To prove the converse we need only show that (Cx)2 -^ -1 . But, Cx is

the closure of a special orbit of V. By (2.5)(3), this means (Cx)2 < 0. So

(Q)2 = (Q)2-K-1.   D

We now prove a lemma which will serve as an induction step in (4.8).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NONSINGULAR AFFINE A:'-SURFACES 907

Lemma (4.7). Let (V, Y) be a minimal G-pair such that each branch of Y(V, Y)

has type 3, some branch has length S > 3 and Y contains exactly one or-

dinary orbit of V.   Then there is a minimal G-pair (V, Y'), a fixed point

x £ V - Y' and an e £ {+, -} such that

(1) (V, Y) = BX(V , Y>),
(2) each branch of Y(V, Y') has type 3, and
(3) Y' contains exactly one ordinary orbit of V.

Proof. Let 38 be a branch of Y(V, Y) of length S > 3, and let 0¡ be the
orbit corresponding to the 7th vertex. Since 38 is of type 3, there is an A

such that On, On+\ c V - Y and O,■ c Y for i: jí A, A + 1 . Also, since

S > 3, exactly one of (ÖN)2 = -1 or (ÖN+x)2 = -1 »

Assume (On)2 = -1 ■ We show there is a minimal G-pair (V, Y') and a

fixed point xeV'-Y' such that (V, Y) = BX(V, Y') with (2) and (3) also

satisfied. In case (0jv+»)2 = -1, a similar proof will show there is a minimal

G-pair (V, Y') and a fixed point x € V- Y' such that (V, Y) = B+(V, Y')
with (2) and (3) also satisfied.

Let tp : V —► V be the blow down of the exceptional curve On ■ Set x =

<p(Ön) » Since 5 > 3, by (3.6) A > 1. Set O = 0N-\ and Y' = tp(Y -0).

Then Y' = tj>(Y) - 4>(Ö) = <f>(Y) - Cx and (V, Y) = BX(V, Y'). It is easy to
see that (V, Y') isa G-pair, so (4.6) implies (V, Y') is minimal. Properties

(2) and (3) are also easily verified.   D

Proposition (4.8). Let (V, Y) be a minimal G-pair. Suppose each branch of

Y(V, Y) is of type 3 and Y contains exactly one ordinary orbit of V. Then

V - Y is affine.

Proof. We use induction on A the number of special orbits of V. If A = 2,

there is exactly one branch of Y(V, Y), its length is two and (4.2) implies

V - Y is affine. Suppose A > 2. If each branch of Y(V, Y) has length two,
(4.2) again implies V- Y is affine. Otherwise there is a branch 38 of Y(V, Y)

of length S > 3 . By (4.7), there is a minimal G-pair (V, Y'), a fixed point
xeV'-Y' and an e e {+, -} such that (V, Y) = BX(V, Y'), each branch

of Y(V, Y') is of type 3 and Y' contains exactly one ordinary orbit of V.

Notice also that V has S - 1 special orbits. So, by the induction hypothesis,

V - Y' is affine. It follows, from (4.6) that V - Y is affine.   D

Theorem (4.9). If (V, Y) is a G-pair, then V - Y is affine.

Proof. After blowing down exceptional curves in Y which are not fixed, we

may assume (V, Y) is minimal. Set X = V - Y . If dimXG = 1 , the theorem

is proved (3.8). So suppose XG is finite or empty. Then Y(V, Y) has the form

given in (3.9). Let 38x, ... , 38L be the branches of type ^, Sj be the length,

and 0{, ... , &s   be the orbits of 38j. Then for each j there is an A,, such

that l<Nj< Sj, Oj/. c V - Y and Oj' c Y for i ^ Nj. Let Ox,... , 0M be

the ordinary orbits of V which are contained in Y, C¡ = 0¡ and C/ = O^.

Set Y' = y-(UÍ=14._,UIJ^2C/) and X' = V - Y'.
We now verify that (V, Y') is a minimal G-pair. Minimality is clear. Sup-

pose, to the contrary, that (V, Y') is not a G-pair. Then there is an irreducible
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invariant closed curve C of V such that C n Y' = 0. Since f+Uf-Cf, C

cannot be F+ , F- or the closure of an ordinary orbit. Thus C is the closure

of a special orbit. But, since (V, Y) is a G-pair, C n T 7-- 0 . So C f)Y' = 0

implies CnCy_. for some j. But, this means C is one of, CJN_2, CN_X or

Cl , each of which intersects Y'. Therefore, no such C exists, and (V, Y')

is a G-pair.

Next, notice that each branch of Y(V, Y') has type 3 and Y' contains

exactly one ordinary orbit of V . Thus X' is affine by (4.8). But, X = X' - H

where Hj is the closure in X' of &N._,, F¡ is the closure in X' of 0, and // =

IL»-« ff/ U U,=2 fi ■ Since /f is a finite union of codimension one subvarieties

of the affine variety X', [La, p. 120] implies the difference X = X' - H is
affine.   D

Corollary (4.10). Let X be an affine G-surface without elliptic fixed points. Let

(V, Y) be a G-pair such that X = V - Y, and let n: V -» V/G be the quotient
of V. Then n\x'. X -» 77(A) ¿s the quotient of X. In particular, X/G is a
nonsingular curve and the points of V/G-X/G are in one-to-one correspondence

with the ordinary orbits of V which are contained in Y.

Proof. Note V/G is nonsingular and Gx n Gy 7-- 0 (closures in V) implies

7t(x) = 7r(y). So by (1.6) we need only show that n\x(x) = it\x(y) implies

Gx n Gy ^ 0 (closures in X).
Let x and y be points of X such that n(x) = n(y). Then x and y lie

on the same fiber / of the ruling n : V —> V/G. If / is irreducible, then

Gx = Gy is an ordinary orbit. Otherwise, let 38 be the corresponding branch

of Y(V, Y). If 38 is of type f, then x, y £ X implies Gx = Gy. If 38
is of type 3, then x, y £ X implies either Gx = Gy, or Gx and Gy are

adjacent orbits. In either case Gx n Gy -?-• 0 (closures in X ).   D

5. The graph of an affine G-surface

We continue to work over an algebraically closed field k of arbitrary char-

acteristic. Throughout, G = k*.

Let X be an affine G-surface without elliptic fixed points and let (V, Y)

be a minimal G-pair such that X = V - Y, such a pair exists by (3.3). In

this section we show that up to the weights at the fixed vertices, Y(V, Y) is

determined by standard invariants of the G-surface X. If dim XG = 1, this

follows from (3.8). In fact, Y(V, Y) is given in (3.8)(1), resp. (3.8)(2), if
the fixed curve XG is a source, resp. sink, of X. So assume XG is finite or

empty. We will show that the branches of Y(V, Y) of type 3 are determined

by the tangent space representations at the corresponding fixed points, and the

branches of type ^ are determined by the Seifert invariants, see below, of the

corresponding closed orbits of X .

Following [OW, 3.3], we define the Seifert invariant. Denote by pa the ath

roots of unity in k*, i.e. pa = Speck[T]/(Ta - 1). Note that if char/c = p,

pa is reduced if and only if p /fa. In any characteristic, the only subschemes

of k* which are also subgroups of k* are the pa for a > 1 .

Let x be a nonfixed point of a G-surface V. Then the isotropy subgroup

of x  is Pa  for some a >  1 .   The action on   V  induces a representation
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o : Pa -* GL(TXV) of pa on the tangent space to x. As in [OW, 3.3], there

is a unique integer y mod a such that for appropriate coordinates x» , x2 on

TXV, <t(7) • (x-, x2) = (/°xi, tyx2). In this case, we write TXV = 7° + ty as

a Pa-surface. The Seifert invariant of x is the pair (a, ß) where pa is the

isotropy subgroup of x, Tx V = 7° + ty as a /7Q-surface, /?y = 1 mod a and

0</3 <a.
Suppose <f is an orbit of a G-surface F. It is straightforward to check that

for x, y £cf, the Seifert invariant of x is the same as the Seifert invariant of

y. Thus we define the isotropy subgroup of tf and the Seifert invariant of tf to

be those of any point x £cf. The isotropy subgroups of orbits of a branch of

T( V) are related to the weights of the corresponding vertices in the following.

Lemma (5.1). Suppose V is a projective G-surface without elliptic fixed points.

Let 38 be a branch ofY(V) of the form

I\       h h-\       Is
•-•       • • • •-•

Let Ox, ... ,Os be the orbits of 38 . Let pa¡ be the isotropy subgroup of 0,,

and let a0 = as+x = 0. Then the following hold.

(1) If Im = -I, then am = am-X + am+x .

(2) If S = 2, or if there is a unique m with Im = -I and 7, < -2 for
i t¿ m, then a¡ = 1 if and only if i = 1 or i = S.

(3) (q, , ai+x) = 1 for i= I, ... ,S-l.

Proof. Since Im = -I, Om is the exceptional curve of a blow up y/ : V -* W.

By (1.8), TXW = ra»-< +t°"»+i , where x = ip(Om). From [OW, 3.4], it follows

that am = am-X + am+x .

To prove (2), let x = O» n F+. By (2.1), TXV = t° + tx, so ax = 1.

Similarly, as = 1. The conditions on the weights of 38 imply that V is

obtained by a sequence of blow ups at hyperbolic fixed points, <z> : V —> V,

where the corresponding branch of V has length two. The converse follows
from ( 1 ) by induction on the number of blow ups in tf>.

The third statement is also proved by induction on the number of blow

ups along 33. If S = 2, ax = as = 1 » If S > 3, let n be such that
I„ = -I and 1 < n < S. Blowing down 0„, by the induction hypothesis
we have (a„_i, a„+x) = 1 . Thus, by (1) (a„_» , a„) = (a„_,, a„_» + a„+x) =

(a„_!, an+x) = 1. Similarly, (a„ , an+x) = 1 .    D

We say an orbit of a G-surface is trivial, if its isotropy subgroup is either G

or {1}, and nontrivial otherwise. Suppose (V, Y) is a minimal G-pair, and

suppose that the fixed set of X = V - Y is finite or empty. From (3.9) it is clear

that there is a one-to-one correspondence between the branches of Y(V, Y) of

type 3 and the fixed points of X. Since ordinary orbits are trivial, from (3.9)

and (5.1)(2) it follows that there is a one-to-one correspondence between the

branches of Y(V, Y) of type ^ and the nontrivial closed orbits of X.

Proposition (5.2). Let X be an affine G-surface without elliptic fixed points, and
suppose that XG is finite or empty. If (Vx, Yx) and (V2, Y2) are both minimal

G-pairs such that X= Vx-Yx = V2-Y2 and F+(VX) ■ F+(VX) = F+(V2) • F+(V2),
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then Y(Vx, Yx) = Y(V2, Y2). Moreover,

(1) the branches of type 3 are determined by the tangent space representa-

tions at the fixed points of X,

(2) the branches of type fê are determined by the Seifert invariants of the

nontrivial closed orbits of X, and

(3) the number of ordinary vertices is \Z - X/G\, where Z is the unique

nonsingular projective curve containing X/G.

Proof. Let K be the number of fixed points and L the number of nontrivial

closed orbits of X. Then each of Y(Vx, Yx) and Y(V2, Y2) has K branches
of type 3, one for each fixed point of X, and L branches of type ^, one for

each nontrivial closed orbit of X. By (3.9)(4), F+(VX)2+F3VX)2 = -(K+L) =
F+(V2)2 + F3V2)2. So, F+(Vx)2 = F+(V2)2 implies F3VX)2 = F_(F2)2. It

follows from (4.10), that the number of ordinary vertices of Y(VX, Yx) is the

same as the number of ordinary vertices of T(V2, Y2), and that this number

is \Z - X/G\, where Z is the unique nonsingular projective curve containing

X/G.
Let ( V, Y) be any minimal G-pair such that X = V - Y . We now show

that the branches of Y(V, Y) of type 3 are determined by the tangent space

representations at the fixed points of X, and the branches of Y( V, Y) of

type i? are determined by the Seifert invariants of the nontrivial closed orbits

of X.
If XG ^ 0, fix x £ XG and write TxX = t~a + tb for positive integers a

and b. Let 38 be the corresponding branch of Y(V, Y) of type 3. Then
Ox and 0+ , cf. (4.3), are the adjacent orbits of 38 which lie in X. Using

(1.8), we see that the isotropy subgroup of 0~ is pa and the isotropy subgroup

of 0+ is pb . From (5.1)(2), it follows that a = b = 1 if and only if the length
of 38 is two. So, in this case, 38 is

-1       -1

Otherwise, exactly one of C~ and Cx , cf. (4.3), has self-intersection -1 in

V. If (Cx)2 = -1, then (5.1)(1) implies a > b. In this case, the Seifert
invariants, cf. [OW, 3.3], of 0~ can be computed to be (a, n), where 0 <

n < a, (a, n) = 1 and nb = 1 mod a. Let [ax, ... , ak] denote the continued

fraction:
1

From [OW, (3.5)(3)] it follows that 38 has the form

-b\       -b2 -«Vi       -1       -/j„+i    -bn+2 -bs-x       -bs
o-o        • • • o m-•-o • • • o-o

where the weights are uniquely determined by the continued fraction represen-

tations —¡ = [bx,..., bn-x] and | = [bs, ... , b„+x].

If (C+)2 = -1, then (5.1)(2) implies b > a. In this case, the Seifert invari-

ants of 0+ are (b, v), where 0 < v < b, (b, v) = 1 and -av = I mod b.
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Here [OW, (3.5)(3)] implies 38 has the form

-CX -C2 -Cn-2     -Cn-\ ~1 ~Cn+\ ~Cs-l ~CS
o o        • ■ • o-•-> o • • ■ o-o

where ^ = [cx, ..., cn-x] and £ = [<:,,..., cn+x] ■

If 0 is a nontrivial closed orbit of X with Seifert invariants (a, ß), then

the corresponding branch of Y(V, Y) of type W is determined from [OW,

(3.5)(3)] to have the form

-dx       -d2 -d„-x       -1       -dn+x -ds-x       -ds

where aJtp = [di,..., d„-X] and f = [ds, ... , d„+x].   D

Suppose X is an affine G-surface without elliptic fixed points and (V, Y)

is a minimal G-pair with X = V - Y. Let C be the closure of an ordinary

orbit of V which is contained in Y. Then, for e = + or -, blowing up

C (1 FE followed by blowing down the proper transform of C yields another

G-pair (V, Y>) with AS V - Y', Fe(V) . Fe(V) = Fe(V) . Fe(V) - 1,
and F-e(V) ■ F-e(V) = F-e(V) • F-e(V) + 1. Thus, repeating this process if

necessary, we may assume that F+(V) • F+(V) = 0.

Definition (5.3). If X is an affine G-surface without elliptic fixed points, then

the graph Y(X) is defined to be Y(V, Y), for any minimal G-pair (V, Y)
with X = V - Y and F+(V) • F+(V) = 0. This is independent of the choice of
such a G-pair.

In (5.5) below, we see that the hyperbolic representations of k* on k2 can

be identified from their graphs and quotients. For this, we need the following.

Lemma (5.4). Let <p:Z^>k2 be the blow up of k2 at (0,0). Then Z-L^k2,
where L is any line in k2 through (0,0).

Proof. Embed 7c2 in P2 as k2 = P2 - Lœ, where L^ = {[x : y : 0]}, and

[x :y : z] are the usual homogeneous coordinates on P2. Let H be the closure

in P2 of the line L through (0,0). Let 4> : Z -> P2 be the blow up of P2 at

[0:0: 1], and Ê = 4>~x([0 : 0 : 1]). Then Z is a geometrically ruled surface

over P1 with two nonintersecting sections, Ê and Zoo • Also, H is a fiber of

the ruling. Thus Z — L = Z — H — L^ . But the latter is a line bundle over k
and hence isomorphic to tc2 .   D

Remark. Suppose (V, Y) is a G-pair such that V - Y = k2, and x e V-Y is

a hyperbolic fixed point. Then (5.4) implies that the plus and minus blow ups

at x, BX(V, Y) = (V, Y UQ), satisfy V - (Y U Cx) = k2.

Lemma (5.5). Let (V, Y) be a minimal G-pair and let X = V - Y. Suppose

X/G s k and Y(X) has the form

Then X is equivariantly isomorphic to a hyperbolic representation of k* on k2.
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Proof. As in the proof of (4.8), (V, Y) is obtained, by plus and minus blow

ups, from a G-pair (Vq, To) whose graph has the form

-1 -1

Since X/G = k, V/G = V0/G = P1 . Let 0 be the ordinary orbit of V0 which

lies in T0 • and set x = F_ n0. From its graph we see that (Vq, To) is obtained

from (P1 x P1, F+ U 0) by blowing up some y £ F- and removing the line

F- - {x} . But,

P1 x P1 - (F+ u 0) = k2.

Since (V, Y) is obtained from (Vq, T0) by plus and minus blow ups, by the

preceding remark, V - Y = k2 . Every action of k* on k2 is linear by [Bl, p.

123], so X = k2 with a hyperbolic representation.   D

6. Homology of C*-surfaces

Throughout this section all varieties are over the complex numbers and G =

C*. The integral homology of an affine C*-surface with hyperbolic fixed points

is computed in terms of its graph. The rational homology of fixed point free

C*-surfaces is also computed. Our main result is that the only acyclic affine

C*-surface is the complex plane with a linear action.

Let F be a nonsingular projective surface. Denote by Pic" V, resp. Pica V,

the subgroup of Pic V consisting of divisors numerically, resp. algebraically,

equivalent to zero. The quotient groups are denoted Num V = Pic V/ Pic" V
and NS V = Pic V/ Pica V ; the latter is called the Néron-Severi group of V .

Viewing V as a complex manifold one can consider the integral singular co-

homology H*(V;Z). There is a natural map v: NS V -> H2(V;Z) which
maps a divisor to its fundamental class. From the exponential sequence, [HI,

p. 446], it follows that v is an isomorphism if and only if H2(V ; cfv) = 0.
Since Num V is the free part of NS V , [H3, 3.1], v : Num V -> H2(V ; Z) is
an isomorphism if and only if H2(V ; cfv) = 0 and H2(V ; Z) is torsion free.

If F is a projective G-surface, then V is ruled. So H2(V;Z) is free,

and the geometric genus, which is the rank of H2(V ; cfv), is zero. Thus, in

this case, v : Num F —> H2(V ; Z) is an isomorphism. By Poincaré duality

H2(V; Z) = H2(V;Z). Thus, Num V = H2(V;Z). This will be used to
obtain relations among homology classes.

We now find relations in Num V . If C and D are numerically equivalent,

we write C ~„ D. The setting for (6.1) and (6.2) is the following.

(i)   V is a projective G-surface such that T(V) has the form of (2.5)(3).

(ii)   0[, ... , 0's  are the orbits of the 7th branch of Y(V), and C| = L%.

(iii)   a'k is such that pa,  is the isotropy subgroup of Ok , and a'0 = a's+l =

0.
(iv)   O : V -> S is a sequence of equivariant blow ups from a geometrically

ruled surface S with a standard action of G.
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Lemma (6.1). Let f be the closure of an ordinary orbit of V. Then in Num V

k=2

for each i = I, ... , R.

Proof. In S, any two fibers are numerically equivalent. So, 0(f) ~„ 0(C|).

Pulling back to V, f ~„ Yfm=2 rn'kC'k , for some m'k . Clearly m\ = 1. Using

(5.1 )( 1 ) and induction on the number of blow ups in O, one can show m'k =

a[.    D

Lemma (6.2). Suppose F+(S)2 = F_(S)2 = 0. Suppose also that O factors as

V —> Vq --* S where Y(Vq) has R branches of length two, each blow up of \p

occurs along F- , and each blow up of 4> is centered at a hyperbolic fixed point

which is contained in an exceptional curve. Then the following hold.

( 1 )  There are unique positive integers y'k such that

R     S

F_~„F+-¿¿y¿q.
(=1 k=2

(2) If (C<)2 = -1, then y'2 = ... = fSi = l.

*m-\ "■" fm+l '   Vl'm(3) If (OJ2 = -l and Km < S¡, then fm = y'     + y'     , ofm_,fm -

oimfm-X = !   and   a'my'm+l " «m+l^« = l ■

Proof. Let y[ be the multiplicity of C¿ in the pullback of F-(S) to V. We
induct on the number, A, of blow ups in <f>. If A = 0, then V = V0. The
condition F+(S)2 = F_(S)2 = 0 implies that F+(S) ~„ F-(S) in S. Note that
the R blow ups of ip : Vq —> 51 are centered at points of F_(S) which lie on

distinct fibers. It follows that, in pulling back to V = Vq , we have

R

(t) F+ = W'(F+(S)) ~„ r(F-(S)) = F- + Y, q.
7=1

Then y[ = 0 and y\, = 1. So, (1) and (2) hold when A = 0.

If A = 1, let (C")2 = -1 be the exceptional curve of the blow up cß : V —>

Vq . From (f), it follows that in V, we have

R

F. ~„ F+ - (CJ + C3") - ¿2 C{.

Then y\ = 0, y2 = 1, and yj = 1. So, ( 1 ) and (2) hold when A = 1. Noting
that a" = a" = 1 and a" = 2, (3) is easily verfied.

If A > 1, let Clm be the exceptional curve of the last blow up 4>n '■ V —* VN-X

of 0. By the induction hypothesis for (1), in VN-X we have

r   S, R      S,

tpN(F-) ~„ 4>N(F+) EMi + EEä
*:=2 (=1 k=2
k±m «V
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Pulling back to V, we have

S, R     Si

F- ~n F+ zZv'kC'k + iy'm-i + y'^cL + EEv'kC'k
k=2 7=1 k=2
k±m i¿l

Then y'm = ylm_l + ylm . So, (1) and the first part of (3) are proved. If m = 2,

then every blow up along the Ith branch occured at the hyperbolic fixed point

in (the image of) C[. Since y\ = 0 and by induction y[ = ■ ■ ■ = y's = 1,

(2) follows. To prove the remaining parts of (3), recall that from (5.1)(1),

alm = a1 _i + alm+l. Thus

¿m-lVm - almy!m-l = "Ll^m-l + vL+l) ~ ("L-l + am+l))Í-l

— am—l'm+1 — am+l^m-l — x >

where the last equality holds by the induction hypothesis. Similarly, aj„y^+1

lm+\ym
ax   ,vx = 1      D

Let X be an affine G-surface. We will compute the integral homology

H.(X; Z), if XG ¿ 0, and the rational homology Ht(X; Q), if XG = 0.
If X contains an elliptic or parabolic fixed point, the homology of X is easily

obtained from (1.9). We record this here. The reduced homology H*(X, x ; R)

is denoted H*(X; R).

Lemma (6.3). Let X be an affine G-surface.

(1) If X contains an elliptic fixed point, then X/G is a point, X = C2 and

X is acyclic.
(2) If X contains a parabolic fixed point, then X/G is an M-punctured

compact 2-manifold of genus g, for some M > 1  and g > 0, and

Hq(X;Z) = {
Z2g+M-l       tfq = ,

0 ifq ¿ 1.

Henceforth we assume the following.

(a) X is an affine G-surface which contains no elliptic or parabolic fixed

points.

(b) (V, Y) is a minimal G-pair such that X = V - Y.
(c) T(V,Y) is as in (3.9) with c = F2 = 0.
(d) g is the genus of F+ .

(e) The orbits of the 7th branch of type 3 are U{, ... , UlR , and C'k = Uk .

(f) The orbits of the ;th branch of type W are 0{, ... , 0¿ , and DJ = Oj'.

(g) f\, • • • • Vm are the closures of the ordinary orbits of V contained in

Y.
Generators for the homology groups of V and Y are given in the next two

lemmas. Submanifolds are identified with their corresponding fundamental

classes in Hq(V;Z) and Hq(Y;Z).

Lemma (6.4). Set A = 2 + £f=i(^< - 1) + £;=,(•?, - 1) ■

( 1 )   Hx(V;Z) = Z2g , generated by the meridians and longitudes of F+ .
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(2) H2(V;Z) = ZA, generated by F+, fx,  {C'k : 2 < k < R¡}f=¡  and

{Dj:2<l<Sj}f=l.
(3) H3(V; Z).= Z2«.

Moreover, the relations given in (6.1) and (6.2) hold in H2(V;Z).

Proof. Let <j> : V -> S be a sequence of blow ups where S is a geometrically

ruled surface with a standard action of G. Topologically, F is obtained from

the 5'-bundle S over the 2-manifold F+ , of genus g, by taking connected

sums with (CP2), one for each blow up. Thus HJV ; Z) and its generators are

as stated. It follows from (c) and (3.9) that the blow ups can be performed so as

to satisfy the hypotheses of (6.2). Since numerical and homological equivalence

agree in V, the relations in (6.1) and (6.2) also hold in H2(V; Z).   G

Lemma (6.5). Set B = 2 + M + £* ,(-R¿ ~ 2) + Y¡=i(sJ ~ l) ■

(1) Hx(Y;Z) = z4g+M~x, generated by the meridians and longitudes F+

and F-, together with {os}^x such that ix(os) = 0 in HX(V;Z).

(2) H2(Y ; Z) = ZB generated by

F+,F-, {/M}£=1, {C¿ : k ¿ Af,, Af, + 1}£,, and {Dj : l ¿ Nj}j=x.

Proof. Observe that Y has the homotopy type of a wedge of F+ , F_ , ( Af - 1 )

circles, and a collection of 2-spheres, one for each C'k and Dj which lies in Y.

The curve as can be realized as a loop connecting the poles of the 2-spheres fs

and fs+x . With this choice it is clear that /■ (as) = 0fors=l,...,M-l.   G

Lemma (6.6). The homomorphism ix : HX(Y ; Z) —> HX(V; Z) is surjective with

kernel a free abelian group of rank 2g + M - 1.

Proof. This follows immediately from (6.4)(1) and (6.5)(1).   G

Let By, resp. By, be the basis for H2(V;Z), resp. H2(Y;Z), given
in (6.4)(2), resp. (6.5)(2). Consider the homomorphism i2: H2(Y;Z) —>
H2(V;Z). If C £ By n BY, then i2(C) = C. Thus, in analyzing i2, we

disregard these common generators. Let Hv, resp. Hy, be the subgroup

of H2(V;Z), resp. H2(Y;Z), generated by By n BY . Set H2(V ; Z) =
H'2(V)®HV and H2(Y; Z) = H'1(Y)®HY . Then i'2 : H'2(Y) -> H^V) satisfies

ker /2 = ker i'2 and coker i'2 = coker i2 .

A basis for H^(Y), resp. H{(V), is BY - (BvnBY), resp. By - (BVC\BY).

The elements of these bases are now given explicitly.

First, of the curves which are not the closures of the special orbits, f2, ... , fM

and F- are in By - (By C\BY).

Next, consider the curves Dj which are the closures of the special orbits of

branches of type &. The y'th such branch has the form

J\ J2 JNj-\ JNj JNj+\ JSj-\ JSj

From (3.6) we know  1 < A7 < Sj. Thus D\ £ BY - (By n BY) and DjNj £

By - (By n BY).
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The situation for the C'k is more complicated. If C[ <£ Y, then the corre-

sponding branch of type 3 has the form

(t) n n Vi '*

So C\ &By\JBY. But Cl2£ Bv - (By n BY). By reordering the branches if
necessary, we may choose n so that the first n branches of type 3 have the

form (f). Explicitly, choose n so that 0 < n < K, C\ t£ Y for i < n, and

C[ cf for i > n . Then for / > 77, the ith branch of type 3 has the form

Il2 I' P
1M¡-\ 1M¡

J' J1
iA7, + l iM,+2 Vi 'k

where Af, > 1. So for i > n, C[ £ By - (By nBY) and ClM. and C'M+] are

in £«/ - (By n 5r).
Thus ordered bases B'Y and ß'K for H2(Y) and H2(V) respectively are

#y = {Dx , ■ ■ ■ , Dx - F- > C"+ , ... , C. , f2, ... , fut)

and

"C - X-^/V, > •"   ' UNL , C2 , . . .   , C2 ,  CAfn+i , CMn+| + , , . . .   , ^Mk , ^MK + \I-

Lemma (6.7). In H'2(V) we have the following relations.

( 1 )   D\ = -ajDjN , where paj is the isotropy subgroup of 0¿ .

(2) For i > n, C\ = -aiC'M-biClM+x, where pa, is the isotropy subgroup of

U^. and Pbi is the isotropy subgroup of UlM+x . By (5.1)(3), (a¡, b¡) =

1. '

(3)   f2 = .-. = fM = 0.
The
and

L

J2=-=Jm = 0.
(4)  There are unique positive integers è}■, o i and x¡ suchthat aiT,-b¡Oi = 1

nvisl

F_ = EôjD^ + ¿q+¿ focj,, + t,cí,i+1
V=l r=\ i=n+\

Proof. The first two statements follow from (6.1). Since any two fibers are

homologically equivalent, (3) holds. By (6.2)(1) there exist unique positive
integers oj, S'r, 07 and t, such that

F_ = - E Wj + E S'rC2 +   E  Wm, + T'Ci/«+l)
uj=i r=\ i=n+\

By (6.2)(2), ô[ = ■ ■ ■ = ô'n = 1, and by (6.2)(3) a,xl - b¡o = 1.   G
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Lemma (6.8). With respect to the ordered bases B'Y and B'v, the matrix for

i'2: H{(Y) -> H¡(V) is given by -Jf1 where

a.

«L

Oz.x« Oz.x2{K-n)

ÔL 1  •••  1     On+x     Xn+\      '■n+X t*K     ÏK

®{K-n)xL 0(K-n)xn

#/!+l bn+x

Qn+2     bn+2

aK   bK

0(M-l)xL 0(M-\)xn 0(M-\)x2(K-n)

and the integers a7, ôj, o¡, t, , a¡ and b¡ are as in (6.7).

Proof. This follows immediately from (6.7).   G

Lemma (6.9). If K > 1, then ker i2 = ZM~X and

coker72 = ZK~X © 0Z/ajZ.

7=1

If K = 0, then ker i2 = ZM and coker i2 c 0jl, Z/ayZ.

Proo/*. First assume A > 1 . Consider the submatrix

1    •••     1 cr«+i    T„+i <Jk    T/i

0(K-n)xn

ûn+1      ^n+l

a«+2     />n+2

ax   bK

of the matrix Jf of (6.8).
Suppose « > 0, then since (a¡, b¿) = 1 for all i = n+l,... , K, by (6.7)(2),

column operations reduce Jf' to

1

If tí = 0, then since also

0¡     T,

a,   ¿>,-

0(K-n+l)x(K-l)

<T,/j, - T,fl,- = - 1

by (6.7)(4), one can again reduce the matrix Jf' to Jf" . In either case column
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operations reduce Jf to

a-

OLL

0{K+\-n)xL

0(M-l)xL

®Lx(K+l-n)

0(M-\)x(K+\-n)

®Lx(K-\)

0(K+\-n)x(K-\)

0(M-(M-l)x(K-l)

from which the result for K > 1 follows.
If K = 0, then

"a,

Q/_

¿I

o(M-l)xL

from which it follows that ker/2 = ZM and coker i2 c 0^=1 Z/afL.   G

Proposition (6.10). Lt?7 A be an affine C-surface with

(1) K > 1 hyperbolic fixed points,
(2) L>0 closed orbits with nontrivial isotropy subgroups pa¡ , ... , paL,

(3) and quotient space X/C*.

Let Z be the unique nonsingular projective curve containing X/C*, g the genus

ofZ, M = \Z-X/G\ and N the rank of Hx (X/C* ; Z). Then N = 2g+M-1
and

' ZN®  ©í=1Z/a;Z,      7/c?=l,

Hq(X;Z)^\ z"+*-i, ifq = 2,

, 0, otherwise .

Proof. Let (V, Y) be a minimal G-pair such that X = V-Y. Then Z = V/G,
which is a compact 2-manifold of genus g . Since the cardinality of Z - X/G
is Af, HX(X/G; Z) = Z2s+M~x .

To compute H*(X; Z), we relate this to H,(V, Y). The later is then com-

puted using the homology exact sequence for the pair (V, Y). All homology

and cohomology groups have integral coefficients; the Z will be dropped from

the notation.
Let T be a neighborhood of Y of which Y is a deformation retract. Then

X' = V - T is a 4-manifold with boundary, d X', and X' is homotopy
equivalent to X. By excision and Poincaré duality HS(V, Y) = HS(V, T) =
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HS(X', dX') = H4~S(X') = H4~S(X). Thus, by the universal coefficient theo-

rem, for 0 < 5 < 3 we have

HS(V, Y) = Hom(H4_s(X), Z) © Ext(H3.s(X), Z)

= Zrank(ff"-sW) © torsion (H3_S(X)).

Solving for the free and torsion parts of Hq(X), for 1 < q < 3

(t) Hq(X) = zrank^-^v'Y)) © torsion (H^q(V, Y)).

Consider the following portion of the exact sequence for the pair (V, Y):

0 _ H3(V) -- H3(V, Y) -^ H2(Y) Ä H2(V)

-> H2(V, Y) -^ HX(Y) X Hx(V) -> 0.

Exactness at the ends holds since H$(Y) = 0 and /• is surjective (6.6). Ex-

tending the sequence, it is easy to see that Hx(V, Y) = 0. Since Hs^x(Y) is

free, HS(V, Y) = kerd, © imageds for s = 2, 3 . Applying (6.6) and (6.9),

L

H2(V,Y)^ cokeri2 ©ker/• = Z""1"*-' © 0Z/a;Z,

7 = 1

and, by (6.4) and (6.9),

H3(V, Y)^H3(V)®keri2^ZN.

Thus, by (f),

L

/71(I)-?Z"ffi0Z/Q;Z       and       H2(X)^ZN+K~X.

7=1

The homology groups Hq(X) vanish for q > 3 , by [M, 7.1].   G

Proposition (6.11). Let X be an affine C*-surface with Xe* = 0. Let Z be
the unique nonsingular projective curve containing X/C*, let g be the genus of

Z and M = \Z - X/C*\. Then the rational homology of X is given by

■Q2g+M> ifq=l,

Hq(X,Q) = \ Q2*+"->,     7/c7 = 2,

0, otherwise.

Proof. As in the proof of (6.10) we have Hq(X ; Z) = 0 for q > 3, and

rank(vY9(A ; Z)) = rank(//4_g(F, Y ; Z))

-{
2 g + rank(ker if), if q = 1,

rank(coker if) + rank(ker if),     if q = 2.

By (6.6), rank(ker/») = 2g + M - 1, and, by (6.9), rank(ker/2) = Af and

rank(coker/2)  =0.Thus,

Hq(X;Q) = Hq(X;Z)®Q={

{ Q2s+M,        ifq=l,

Q2*+M-l;       ifq = 2,

0, otherwise.   G
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Theorem (6.12). Let X be an affine C'-surface. If X is acyclic, then X is

equivariantly isomorphic to C2 with a linear action of C*.

Proof. If Xe' =0, then by (6.11) rank(//»(A; Z)) > 0. Thus, Xe' is
nonempty.

Case 1. X contains an elliptic fixed point. In this case, by (1.9), X is
isomorphic to the tangent space representation at the fixed point.

Case 2. X contains a parabolic fixed point. The acyclic condition implies

that in (6.3) we must have g = 0 and Af = 1. But then X/C* = C. So, by
(1.9), A is a G-vector bundle over C. The only such surface is C2, and an

action on a G-vector bundle is linear.

Case 3. X contains a hyperbolic fixed point. Since Hx (X;Z) = 0, in

(6.10), we must have g = 0,Af=l,andL = 0. Hence X/C* = C and X
contains no nontrivial closed orbit. Also, since H2(X ; Z) = 0, K = 1 . Thus

X contains a unique fixed point and the graph Y(X) has the form:

fi       h In-i       In        In+\       In+2 h-i       Is

By (5.5), X must be C2 with a linear action of C*  and a hyperbolic fixed

point.   G
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