
Vector Spaces

Definition 1. A vector space is an Abelian group (V,+) (vectors), a field F (scalars),
and a binary operation · : F ×V → V (scalar multiplication) satisfying the following prop-
erties for all scalars a, b ∈ F and vectors x,y ∈ V:

(i) a · (x + y) = a · x + a · y;

(ii) (a+ b) · x = a · x + b · x;

(iii) (ab) · x = a · (b · x);

(iv) 1 · x = x.

We say that V is a vector space over F , or simply that V is a vector space.

Remark. The above properties are listed on page 7 of the textbook without using the
terminology of groups. You can identify them as follows: VS 1=‘Abelian’, VS 2,3,4 are the
group axioms, VS 7,8,6,5 are listed here as (i)-(iv).

Notations: Addition in F and in V are both denoted by +, multiplication in F and the
scalar multiplication are both denoted by · (the context makes it clear which one is used).
Similarly, 0 stands for the identity for + and −x for the (additive) inverse of x both in F and
in V (although in this handout I use bold face 0 for the ‘zero vector’). 1 is the multiplicative
identity in F , and x−1 is the multiplicative inverse of the non-zero element x ∈ F . We often
write ab and cx instead of a · b and c · x.

The following properties are easily seen. They express that most standard rules of high-
school algebra are valid for vector spaces:

For all a, b ∈ F and x,y ∈ V:

• (a) a · 0 = 0

• (b) 0 · x = 0 (Note the two different 0s!)

• (c) (−a) · x = −(a · x) = a · (−x)

• (d) (−a) · (−x) = a · x

• (e) (−1) · x = −x

• (f) a · (x− y) = a · x− a · y

• (g) (a− b) · x = a · x− b · x

• (h) a · x = 0 iff either a = 0 or x = 0



Remark: Very formally (too formally perhaps) a vector space is a six-tuple (V, F,⊕,�,+, ·),
where ⊕ : F ×F → F , � : F ×F → F , + : V×V→ V, · : F ×V→ V, and the operations
satisfy 17 properties: the 9 properties expressing that (F,⊕,�) is a field, the 4 properties
expressing that (V,+) is an Abelian group, and the above 4 properties connecting the scalar
multiplication · with the other operations:

(i) c · (x + y) = c · x + c · y;

(ii) (a⊕ b) · x = a · x + b · x;

(iii) (a� b) · x = a · (b · x);

(iv) 1 · x = x.

We will use the first (sensible) notation, but keep in mind the dual roles of +,−, ·, and 0
(and also that we did not define multiplication of vectors).

A cautionary example:

Let V = Z and F = Z2. Define (vector-)additition on Z as ordinary addition of integers,
and define scalar multiplication by the natural rules: 0 · x = 0 and 1 · x = x for all x ∈ Z.
Is V a vector space over F ? The answer is NO.
Proof (indirect): Assume it is. Then we would have

10 = 5 + 5 = 1 · 5 + 1 · 5 = (1 + 1) · 5 = 0 · 5 = 0,

a contradiction. 2

If you are confused about this, it would help a little to distinguish the different components:
Let us write 0 and 1 for the elements of F , but n for the “vectors” n ∈ V = Z. Also, as
above, we write ⊕ and � for operations in F (mod 2 operations) and + for addition in V
(which is not mod 2, so 5+5 is 10 and not 0), and · for scalar multiplication.
Then the above line will read as:

10 = 5 + 5 = 1 · 5 + 1 · 5 = (1⊕ 1) · 5 = 0 · 5 = 0 , a contradiction.

The following general conclusion can be derived from this argument:

Theorem. Let V be a non-trivial vector space over a field F . Then every non-zero vector
in V has the same order. The characteristic of V can be defined as this common order if it
is finite and 0 if the common order is infinite. With this definition, char(V) = char(F ).


