Vector Spaces

Definition 1. A vector space is an Abelian group $(\mathbf{V},+)$ (vectors), a field F (scalars), and a binary operation $\cdot: F \times \mathbf{V} \rightarrow \mathbf{V}$ (scalar multiplication) satisfying the following properties for all scalars $a, b \in F$ and vectors $\mathbf{x}, \mathbf{y} \in \mathbf{V}$:
(i) $a \cdot(\mathbf{x}+\mathbf{y})=a \cdot \mathbf{x}+a \cdot \mathbf{y}$;
(ii) $(a+b) \cdot \mathbf{x}=a \cdot \mathbf{x}+b \cdot \mathbf{x}$;
(iii) $(a b) \cdot \mathbf{x}=a \cdot(b \cdot \mathbf{x})$;
(iv) $1 \cdot \mathbf{x}=\mathbf{x}$.

We say that \mathbf{V} is a vector space over F, or simply that \mathbf{V} is a vector space.
Remark. The above properties are listed on page 7 of the textbook without using the terminology of groups. You can identify them as follows: VS 1='Abelian', VS 2,3,4 are the group axioms, VS 7,8,6,5 are listed here as (i)-(iv).

Notations: Addition in F and in \mathbf{V} are both denoted by + , multiplication in F and the scalar multiplication are both denoted by • (the context makes it clear which one is used). Similarly, 0 stands for the identity for + and $-x$ for the (additive) inverse of x both in F and in \mathbf{V} (although in this handout I use bold face $\mathbf{0}$ for the 'zero vector'). 1 is the multiplicative identity in F, and x^{-1} is the multiplicative inverse of the non-zero element $x \in F$. We often write $a b$ and $c \mathbf{x}$ instead of $a \cdot b$ and $c \cdot \mathbf{x}$.

The following properties are easily seen. They express that most standard rules of highschool algebra are valid for vector spaces:
For all $a, b \in F$ and $\mathbf{x}, \mathbf{y} \in \mathbf{V}$:

- (a) $a \cdot \mathbf{0}=\mathbf{0}$
- (b) $0 \cdot \mathbf{x}=\mathbf{0}$ (Note the two different 0s!)
- (c) $(-a) \cdot \mathbf{x}=-(a \cdot \mathbf{x})=a \cdot(-\mathbf{x})$
- (d) $(-a) \cdot(-\mathbf{x})=a \cdot \mathbf{x}$
- (e) $(-1) \cdot \mathbf{x}=-\mathbf{x}$
- (f) $a \cdot(\mathbf{x}-\mathbf{y})=a \cdot \mathbf{x}-a \cdot \mathbf{y}$
- (g) $(a-b) \cdot \mathbf{x}=a \cdot \mathbf{x}-b \cdot \mathbf{x}$
- (h) $a \cdot \mathbf{x}=\mathbf{0}$ iff either $a=0$ or $\mathbf{x}=\mathbf{0}$

Remark: Very formally (too formally perhaps) a vector space is a six-tuple ($\mathbf{V}, F, \oplus, \odot,+, \cdot)$, where $\oplus: F \times F \rightarrow F, \odot: F \times F \rightarrow F,+: \mathbf{V} \times \mathbf{V} \rightarrow \mathbf{V}, \cdot: F \times \mathbf{V} \rightarrow \mathbf{V}$, and the operations satisfy 17 properties: the 9 properties expressing that (F, \oplus, \odot) is a field, the 4 properties expressing that $(\mathbf{V},+)$ is an Abelian group, and the above 4 properties connecting the scalar multiplication - with the other operations:

$$
\begin{equation*}
c \cdot(\mathbf{x}+\mathbf{y})=c \cdot \mathbf{x}+c \cdot \mathbf{y} \tag{i}
\end{equation*}
$$

(ii) $(a \oplus b) \cdot \mathbf{x}=a \cdot \mathbf{x}+b \cdot \mathbf{x}$;
(iii) $(a \odot b) \cdot \mathbf{x}=a \cdot(b \cdot \mathbf{x})$;
(iv) $1 \cdot \mathbf{x}=\mathbf{x}$.

We will use the first (sensible) notation, but keep in mind the dual roles of,,$+- \cdot$, and 0 (and also that we did not define multiplication of vectors).

A cautionary example:

Let $\mathbf{V}=\mathbb{Z}$ and $F=\mathbb{Z}_{2}$. Define (vector-)additition on \mathbb{Z} as ordinary addition of integers, and define scalar multiplication by the natural rules: $0 \cdot x=0$ and $1 \cdot x=x$ for all $x \in \mathbb{Z}$. Is \mathbf{V} a vector space over F ? The answer is NO.
Proof (indirect): Assume it is. Then we would have

$$
10=5+5=1 \cdot 5+1 \cdot 5=(1+1) \cdot 5=0 \cdot 5=0
$$

a contradiction.
If you are confused about this, it would help a little to distinguish the different components: Let us write 0 and 1 for the elements of F, but \underline{n} for the "vectors" $n \in \mathbf{V}=\mathbb{Z}$. Also, as above, we write \oplus and \odot for operations in $F(\bmod 2$ operations) and + for addition in \mathbf{V} (which is not $\bmod 2$, so $5+5$ is 10 and not 0), and \cdot for scalar multiplication.
Then the above line will read as:

$$
\underline{10}=\underline{5}+\underline{5}=1 \cdot \underline{5}+1 \cdot \underline{5}=(1 \oplus 1) \cdot \underline{5}=0 \cdot \underline{5}=\underline{0}, \quad \text { a contradiction. }
$$

The following general conclusion can be derived from this argument:
Theorem. Let \mathbf{V} be a non-trivial vector space over a field F. Then every non-zero vector in \mathbf{V} has the same order. The characteristic of \mathbf{V} can be defined as this common order if it is finite and 0 if the common order is infinite. With this definition, $\operatorname{char}(\mathbf{V})=\operatorname{char}(F)$.

