1 Euclidean Constructible Numbers

Theorem: The set of numbers, E, that can be constructed using Euclidean construction rules forms a field.

1.1 Introduction to Fields

Reminder: Let $*$ be an associative binary operation on a nonempty set G. We call $(G, *)$ a group if G has an identity and each element of G has an inverse.

Definition: A field is a set F with two commutative binary operations $+$ and $*$ (addition and multiplication) such that:

(i) F is a group under $+$
(ii) $F \setminus \{0\}$ is a group under $*$
(iii) distributive law: $(\forall a, b, c \in F) \ a * (b + c) = a * b + a * c$

Which are fields under the usual addition and multiplication operations?

- \mathbb{Q}
- \mathbb{R}
- \mathbb{Z}_5
- \mathbb{C}
- \mathbb{Z}
- \mathbb{Z}_6

- More generally, for which n is \mathbb{Z}_n a field?

Definition: Suppose F, K are fields. Then $F \preceq K$ means F is a subfield of K, that is, $F \subseteq K$ and F is a field with the same $+$ and $*$ of K.

- $\mathbb{Q} \preceq \mathbb{R} \preceq \mathbb{C}$
- $\mathbb{Z}_5 \not\preceq \mathbb{Z}_7$
- $\mathbb{Z}_5 \not\preceq \mathbb{R}$
1.2 Some facts about Euclidean Geometry

- A collapsing compass is equivalent to the modern or noncollapsing compass. That is, even with the collapsing compass we can copy given distances to other locations.
- Given a line segment \overline{AB} along line L, we can construct a perpendicular bisector.
- We can construct a circle with a given diameter.
- Given a line L and a point P, we can construct a line through P that is perpendicular to L. (two cases: P may or may not be on L)
- Given a line L and a point P not on L, we can construct a line through P that is parallel to L.

1.3 Constructible Numbers

Once some distances x and y are constructed, we can construct new ones from them:

- $(\forall x, y \in \mathbb{E}) x + y \in \mathbb{E}$
- $(\forall x, y \in \mathbb{E}) x - y \in \mathbb{E}$
- $(\forall x, y \in \mathbb{E}) x \cdot y \in \mathbb{E}$
- $(\forall x, y \in \mathbb{E})$ if $y \neq 0$, then $x/y \in \mathbb{E}$

These four properties show that \mathbb{E} is a field, containing all elements of \mathbb{Q}:

$$\mathbb{Q} \leq \mathbb{E} \leq \mathbb{R} \leq \mathbb{C}$$

However, there is an extra property of \mathbb{E} that shows that it is larger than \mathbb{Q}, namely that \mathbb{E} is closed under taking square root:

- $(\forall x \in \mathbb{E})$ if $x \geq 0$, then $\sqrt{x} \in \mathbb{E}$

Thus, \mathbb{E}, the set of constructible numbers, is strictly larger than the set of rational numbers since \mathbb{E} is also closed under taking square root (of positive elements); an example of a number which is in \mathbb{E} but not in \mathbb{Q} is $\sqrt{2}$.
