
Notations: we write Z+ = {0, 1, 2, . . .}, N = {1, 2, 3, . . .}, 2N := {2n;n ∈ N} = {2, 4, 6, . . .},
and 2N− 1 := {2n− 1;n ∈ N} = {1, 3, 5, . . .}.

Properties

In the following, ◦ : S × S → S is a binary operation on a nonempty set S. We write a ◦ b
instead of the too formal ◦(a, b).

We say that ◦ is associative if (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ S. This is the most
important property, and all our operations below will share that.

Definition. Let ◦ be an associative binary operation on a nonempty set S. Then the pair
(S, ◦) is a called a semigroup. (When the operation ◦ is clear from the context, we often
just say that S is a semigroup.)

Remark. Implicit in the word “binary operation” is the following property - often called
closure: for all a, b ∈ S, a ◦ b ∈ S.

We say that ◦ is commutative if a ◦ b = b ◦ a for all a, b ∈ S. [Warning: our operations are
not assumed to be commutative unless explicitly stated so!]

We say that (S, ◦) has an identity (or “S has an identity” for short) if there is an element
e ∈ S such that e ◦ x = x and x ◦ e = x for all x ∈ S. An identity is also called a neutral
element. It is easy to see that when exists, the identity is unique. [Indeed, if e and e′ are
identities, then e = e ◦ e′ = e′.] A semigroup with identity is sometimes called a monoid.

When a semigroup (S, ◦) has an identity e, we say that an element a ∈ S has an inverse (or
“a is invertible”, or “a is a unit”) if there is a b ∈ S such that a◦b = e and b◦a = e; it is easy
to see that if exists, such an element b is unique; we usually write a−1 for this b and call it the
inverse of a. [Indeed, if b and b′ are two such elements, then b = b ◦ (a ◦ b′) = (b ◦ a) ◦ b′ = b′.]
The set of all invertible elements of S is denoted by S∗.

Given two binary operations + and · on the same set S, we say that · distributes over + if
a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a for all a, b, c ∈ S.

Examples. (R,+), (Z,+), (Z+,+), (N, ·), (2N − 1, ·), (Zn,+), (Zn, ·), as well as the set
of n × n real matrices with respect to matrix-multiplication are semigroups with identity.
(N,+) and (2N, ·) are semigroups without identity.

Structures

Definition. Let ◦ be an associative binary operation on a nonempty set G. The pair (G, ◦)
is a called a group if G has an identity and each element of G has an inverse. The number
of elements in G is called the order of the group. When ◦ is commutative, we say that the
group (G, ◦) is commutative or Abelian.



Remark. We often use · to denote the group operation and call it multiplication. Then we
may just write ab for a ·b, and sometimes we write 1 to denote the identity. For commutative
groups, we often use + to denote the operation and call it addition, write 0 for the identity,
and (−a) for the inverse of a.

Theorem. Let (S, ◦) be a semigroup with identity (a monoid). Then (S∗, ◦) is a group.

Examples. Of the above semigroup examples, the only ones that are groups are (R,+),
(Z,+) and (Zn,+). Here are a few more standard Abelian groups: (Q,+), (C,+), (Q\{0}, ·),
(R \ {0}, ·), (C \ {0}, ·). The set of all k× k non-singular real matrices forms a non-Abelian
group with respect to matrix-multiplication; so does the set of all symmetries of an equilateral
triangle under composition.

A useful (counter)example: Let S be a set containing at least two elements. Define a binary
operation · on S by (∀x, y ∈ S)x · y = x. How do the group axioms fare for S equipped with
this operation? Firstly, · is clearly associative. Furthermore, the condition |S| ≥ 2 implies
that S has no left-identity (hence no identity), but every element of S is a right-identity.
This example may be useful for discarding some hastily made conjectures about groups. One
could add an identity e to S and still keep its weirdness.

Definition. Let R be a set equipped with two binary operations + and · such that

(1) (R,+) is a commutative group (we will always write 0 for its neutral element)

(2) (R, ·) is a semigroup

(3) · distributes over +

Then (R,+, ·) is called a ring. (We often just say R is a ring.)

Furthermore, if · is also commutative, then R is a commutative ring.
R is a ring with identity if R has a multiplicative identity.

Remark. It is easy to see that in a ring (R,+, ·) one always has 0 · a = 0 and a · 0 = 0 for
all a ∈ R. [Indeed, for any a ∈ R, 0 · a = (0 + 0) · a = 0 · a + 0 · a; use cancellation, and do
the same from the left of 0.] Hence, if a ring has at least two elements and it has an identity,
then the identity is different from 0. If in a ring there are non-zero elements a and b such
that a · b = 0, then such elements are called zero divisors.

Definition. Let (F,+, ·) be a commutative ring with an identity 1 6= 0. If all nonzero
elements of F are invertible, then the ring is called a field. Hence in a field (F,+, ·)
(i) (F,+) is a commutative group

(ii) (F \ {0}, ·) is a commutative group

(iii) · distributes over +

Remark. It is easy to see that (i)-(iii) are not only corollaries of the field definition but are
equivalent to it.

Examples. The set of all k× k real matrices is a ring (under matrix addition and multipli-
cation). It is a non-commutative ring with identity and it has zero divisors.

(Z,+, ·) is a commutative ring with identity and it has no zero divisors. In view of this
example, such structures are called integral domains. Contrast this infinite example with
the following fact:

Exercise. Prove that a finite integral domain (D,+, ·) is a field. [Hint: Given a nonzero
a ∈ D, prove the existence of a−1 by considering the set aD := {ax : x ∈ D}.]



Subgroups, subrings, subfields

Definition. Let (G, ◦) be a group. A subset H of G is a subgroup if H itself is a group with
respect to the same operation ◦. We write (H, ◦) ≤ (G, ◦), or simply write H ≤ G when it
is clear what the operation is. H < G means H ≤ G and H 6= G (proper subgroup).

It is easy to see that H ⊆ G forms a subgroup with respect to ◦ if and only if H is nonempty,
H is closed under ◦, and H is closed under taking inverse (in (G, ◦)). The following test
provides a more compact form:

Theorem (Closure Test). Let (G, ◦) be a group and let H ⊆ G be nonempty. Then (H, ◦)
is a group if and only if a−1 ◦ b ∈ H for all a, b ∈ H.

With a similar definition for subrings and subfields, one can show that a nonempty subset
of a ring forms a subring if and only if it is closed under subtraction and multiplication, and
a subset of a field forms a subfield if and only if it has at least two elements and is closed
under subtraction and division (by nonzero elements). We use the same notation H ≤ G
when it is clear from the context of whether it means subgroup or subring or subfield.

Examples: (2Z,+) < (Z,+) < (Q,+) < (R,+) < (C,+) and (Q∗, ·) < (R∗, ·) < (C∗, ·) are
subgroup relations, (Q,+, ·) < (R,+, ·) < (C,+, ·) are subfield relations, while (Z,+, ·) is
only a subring of the field (and hence ring) (R,+, ·).

Theorem (Z). The only subgroups of (Z,+) are the sets dZ := {dn : n ∈ Z}, d = 0, 1, 2, . . .

[Hint for a proof: let I ≤ Z and start with the smallest positive element of I (if any).]

Corollary. Let (G, ·) be a group with identity e, and let a ∈ G be arbitrary. The set
{k ∈ Z : ak = e} is clearly a subgroup of Z, and hence it is of the form dZ for some
nonnegative integer d. When this d is positive, we say that the order of a is d, and we write
o(a) = d. Thus, the order of a is the smallest positive integer d (if any) such that ad = e.

Theorem (Lagrange). Let G be a finite group of order n with identity e. Then, an = e for
all a ∈ G. Hence, the order of any element of G is a divisor of n. More generally, the order
of any subgroup of G divides n.

Remark. One can get an easy proof for commutative groups by using the following lemma.
(For non-commutative groups the standard proofs use the notion of cosets.)

Lemma. Let (G, ◦) be a group and let a ∈ G be arbitrary. The map fa : G→ G : x 7→ a ◦ x
is a bijection.

Proof of Lagrange’s theorem in the commutative case: Let a ∈ G. By the previous lemma,∏
g∈G

g =
∏
g∈G

(ag) = a|G|
∏
g∈G

g

and the claim follows.



Some number-theoretical consequences

The greatest common divisor of a and b is denoted by gcd(a, b).

Theorem (Fermat’s Little Theorem). Let p be prime and let a be not divisible by p.
Then,

ap−1 ≡ 1 (mod p).

This theorem is a special case of Euler’s theorem (see below).

Definition. For m ∈ N, we define the Euler (totient) function ϕ(m) as follows: ϕ(m) is the
number of integers between 1 and m that are relatively prime to m:

ϕ(m) := |{k : 1 ≤ k < m, gcd(k,m) = 1}|.

Theorem (Euler’s Theorem). Let m ∈ N, m ≥ 2, and let a be relatively prime to m.
Then,

aϕ(m) ≡ 1 (mod m).

Proof. Indeed, the set S := {k : 1 ≤ k < m, gcd(k,m) = 1} = Z
∗
m (the set of invertible

elements of Zm) forms a group under multiplication modulo m. Hence the claim follows from
Lagrange’s theorem (which we proved in the commutative case).

Remark. It is not hard to find the following explicit formula for ϕ(m): If m = pα1
1 p

α2
2 · · · p

αk
k

where pi are distinct primes, then

ϕ(m) = m
k∏
i=1

(
1− 1

pi

)
.

The following theorem can be proved from Theorem (Z) above.

Theorem (GCD Theorem). Let a and b be non-zero integers. Then there are integers x
and y such that gcd(a, b) = ax+ by. In fact, writing d = gcd(a, b), we have

{ax+ by : x, y ∈ Z} = dZ := {dn : n ∈ Z}.

Remark. The Extended Euclidean Algorithm computes one such pair (x, y) as well as
gcd(a, b) — see www.millersv.edu/∼bikenaga/absalg/exteuc/exteucth.html

Corollary. The greatest common divisor of a and b is a multiple of all common divisors of
a and b.

Corollary. The (Diophantine) equation ax+ by = c has a solution (in integers x, y) if and
only if gcd(a, b) divides c.

In other words, the congruence ax ≡ c (modm) has a solution x if and only if gcd(a,m)
divides c; and in that case there are exactly gcd(a,m) different solutions modulo m.

Theorem. If a divides b · c, and a and b are relatively prime, then a divides c.

Proof. By the GCD Theorem, there are x, y such that 1 = gcd(a, b) = ax + by. Hence
c = acx+ bcy, and since both acx and bcy are divisible by a, so is c.

Corollary. If a prime p divides b · c, then either p divides b or p divides c.

Corollary (The Fundamental Theorem of Arithmetic). Any integer greater than 1
can be factored uniquely as a product of primes.


