Notations: we write $\mathbb{Z}^{+}=\{0,1,2, \ldots\}, \mathbb{N}=\{1,2,3, \ldots\}, 2 \mathbb{N}:=\{2 n ; n \in \mathbb{N}\}=\{2,4,6, \ldots\}$, and $2 \mathbb{N}-1:=\{2 n-1 ; n \in \mathbb{N}\}=\{1,3,5, \ldots\}$.

Properties

In the following, $\circ: S \times S \rightarrow S$ is a binary operation on a nonempty set S. We write $a \circ b$ instead of the too formal $\circ(a, b)$.

We say that \circ is associative if $(a \circ b) \circ c=a \circ(b \circ c)$ for all $a, b, c \in S$. This is the most important property, and all our operations below will share that.

Definition. Let \circ be an associative binary operation on a nonempty set S. Then the pair (S, \circ) is a called a semigroup. (When the operation \circ is clear from the context, we often just say that S is a semigroup.)

Remark. Implicit in the word "binary operation" is the following property - often called closure: for all $a, b \in S, a \circ b \in S$.

We say that \circ is commutative if $a \circ b=b \circ a$ for all $a, b \in S$. [Warning: our operations are not assumed to be commutative unless explicitly stated so!]

We say that (S, \circ) has an identity (or " S has an identity" for short) if there is an element $e \in S$ such that $e \circ x=x$ and $x \circ e=x$ for all $x \in S$. An identity is also called a neutral element. It is easy to see that when exists, the identity is unique. [Indeed, if e and e^{\prime} are identities, then $e=e \circ e^{\prime}=e^{\prime}$.] A semigroup with identity is sometimes called a monoid.

When a semigroup (S, \circ) has an identity e, we say that an element $a \in S$ has an inverse (or " a is invertible", or " a is a unit") if there is a $b \in S$ such that $a \circ b=e$ and $b \circ a=e$; it is easy to see that if exists, such an element b is unique; we usually write a^{-1} for this b and call it the inverse of a. [Indeed, if b and b^{\prime} are two such elements, then $b=b \circ\left(a \circ b^{\prime}\right)=(b \circ a) \circ b^{\prime}=b^{\prime}$.] The set of all invertible elements of S is denoted by S^{*}.

Given two binary operations + and \cdot on the same set S, we say that \cdot distributes over + if $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ for all $a, b, c \in S$.

Examples. $(\mathbb{R},+),(\mathbb{Z},+),\left(\mathbb{Z}^{+},+\right),(\mathbb{N}, \cdot),(2 \mathbb{N}-1, \cdot),\left(\mathbb{Z}_{n},+\right),\left(\mathbb{Z}_{n}, \cdot\right)$, as well as the set of $n \times n$ real matrices with respect to matrix-multiplication are semigroups with identity. $(\mathbb{N},+)$ and $(2 \mathbb{N}, \cdot)$ are semigroups without identity.

Structures

Definition. Let \circ be an associative binary operation on a nonempty set G. The pair (G, \circ) is a called a group if G has an identity and each element of G has an inverse. The number of elements in G is called the order of the group. When \circ is commutative, we say that the group (G, \circ) is commutative or Abelian.

Remark. We often use • to denote the group operation and call it multiplication. Then we may just write $a b$ for $a \cdot b$, and sometimes we write 1 to denote the identity. For commutative groups, we often use + to denote the operation and call it addition, write 0 for the identity, and $(-a)$ for the inverse of a.
Theorem. Let (S, \circ) be a semigroup with identity (a monoid). Then $\left(S^{*}, \circ\right)$ is a group.
Examples. Of the above semigroup examples, the only ones that are groups are $(\mathbb{R},+)$, $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{n},+\right)$. Here are a few more standard Abelian groups: $(\mathbb{Q},+),(\mathbb{C},+),(\mathbb{Q} \backslash\{0\}, \cdot)$, $(\mathbb{R} \backslash\{0\}, \cdot),(\mathbb{C} \backslash\{0\}, \cdot)$. The set of all $k \times k$ non-singular real matrices forms a non-Abelian group with respect to matrix-multiplication; so does the set of all symmetries of an equilateral triangle under composition.

A useful (counter)example: Let S be a set containing at least two elements. Define a binary operation - on S by $(\forall x, y \in S) x \cdot y=x$. How do the group axioms fare for S equipped with this operation? Firstly, • is clearly associative. Furthermore, the condition $|S| \geq 2$ implies that S has no left-identity (hence no identity), but every element of S is a right-identity. This example may be useful for discarding some hastily made conjectures about groups. One could add an identity e to S and still keep its weirdness.

Definition. Let R be a set equipped with two binary operations + and \cdot such that
(1) $(R,+)$ is a commutative group (we will always write 0 for its neutral element)
(2) (R, \cdot) is a semigroup
(3) • distributes over +

Then $(R,+, \cdot)$ is called a ring. (We often just say R is a ring.)
Furthermore, if \cdot is also commutative, then R is a commutative ring.
R is a ring with identity if R has a multiplicative identity.
Remark. It is easy to see that in a ring $(R,+, \cdot)$ one always has $0 \cdot a=0$ and $a \cdot 0=0$ for all $a \in R$. [Indeed, for any $a \in R, 0 \cdot a=(0+0) \cdot a=0 \cdot a+0 \cdot a$; use cancellation, and do the same from the left of 0.] Hence, if a ring has at least two elements and it has an identity, then the identity is different from 0 . If in a ring there are non-zero elements a and b such that $a \cdot b=0$, then such elements are called zero divisors.
Definition. Let $(F,+, \cdot)$ be a commutative ring with an identity $1 \neq 0$. If all nonzero elements of F are invertible, then the ring is called a field. Hence in a field $(F,+, \cdot)$
(i) $(F,+)$ is a commutative group
(ii) $(F \backslash\{0\}, \cdot)$ is a commutative group
(iii) • distributes over +

Remark. It is easy to see that (i)-(iii) are not only corollaries of the field definition but are equivalent to it.

Examples. The set of all $k \times k$ real matrices is a ring (under matrix addition and multiplication). It is a non-commutative ring with identity and it has zero divisors.
$(\mathbb{Z},+, \cdot)$ is a commutative ring with identity and it has no zero divisors. In view of this example, such structures are called integral domains. Contrast this infinite example with the following fact:

Exercise. Prove that a finite integral domain $(D,+, \cdot)$ is a field. [Hint: Given a nonzero $a \in D$, prove the existence of a^{-1} by considering the set $a D:=\{a x: x \in D\}$.]

Subgroups, subrings, subfields

Definition. Let (G, \circ) be a group. A subset H of G is a subgroup if H itself is a group with respect to the same operation \circ. We write $(H, \circ) \leq(G, \circ)$, or simply write $H \leq G$ when it is clear what the operation is. $H<G$ means $H \leq G$ and $H \neq G$ (proper subgroup).

It is easy to see that $H \subseteq G$ forms a subgroup with respect to o if and only if H is nonempty, H is closed under \circ, and H is closed under taking inverse (in (G, \circ)). The following test provides a more compact form:

Theorem (Closure Test). Let (G, \circ) be a group and let $H \subseteq G$ be nonempty. Then (H, \circ) is a group if and only if $a^{-1} \circ b \in H$ for all $a, b \in H$.

With a similar definition for subrings and subfields, one can show that a nonempty subset of a ring forms a subring if and only if it is closed under subtraction and multiplication, and a subset of a field forms a subfield if and only if it has at least two elements and is closed under subtraction and division (by nonzero elements). We use the same notation $H \leq G$ when it is clear from the context of whether it means subgroup or subring or subfield.

Examples: $(2 \mathbb{Z},+)<(\mathbb{Z},+)<(\mathbb{Q},+)<(\mathbb{R},+)<(\mathbb{C},+)$ and $\left(\mathbb{Q}^{*}, \cdot\right)<\left(\mathbb{R}^{*}, \cdot\right)<\left(\mathbb{C}^{*}, \cdot\right)$ are subgroup relations, $(\mathbb{Q},+, \cdot)<(\mathbb{R},+, \cdot)<(\mathbb{C},+, \cdot)$ are subfield relations, while $(\mathbb{Z},+, \cdot)$ is only a subring of the field (and hence ring) ($\mathbb{R},+, \cdot)$.

Theorem (\mathbb{Z}). The only subgroups of $(\mathbb{Z},+)$ are the sets $d \mathbb{Z}:=\{d n: n \in \mathbb{Z}\}, d=0,1,2, \ldots$
[Hint for a proof: let $I \leq \mathbb{Z}$ and start with the smallest positive element of I (if any).]
Corollary. Let (G, \cdot) be a group with identity e, and let $a \in G$ be arbitrary. The set $\left\{k \in \mathbb{Z}: a^{k}=e\right\}$ is clearly a subgroup of \mathbb{Z}, and hence it is of the form d \mathbb{Z} for some nonnegative integer d. When this d is positive, we say that the order of a is d, and we write $o(a)=d$. Thus, the order of a is the smallest positive integer d (if any) such that $a^{d}=e$.

Theorem (Lagrange). Let G be a finite group of order n with identity e. Then, $a^{n}=e$ for all $a \in G$. Hence, the order of any element of G is a divisor of n. More generally, the order of any subgroup of G divides n.

Remark. One can get an easy proof for commutative groups by using the following lemma. (For non-commutative groups the standard proofs use the notion of cosets.)

Lemma. Let (G, \circ) be a group and let $a \in G$ be arbitrary. The map $f_{a}: G \rightarrow G: x \mapsto a \circ x$ is a bijection.

Proof of Lagrange's theorem in the commutative case: Let $a \in G$. By the previous lemma,

$$
\prod_{g \in G} g=\prod_{g \in G}(a g)=a^{|G|} \prod_{g \in G} g
$$

and the claim follows.

Some number-theoretical consequences

The greatest common divisor of a and b is denoted by $\operatorname{gcd}(a, b)$.
Theorem (Fermat's Little Theorem). Let p be prime and let a be not divisible by p. Then,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

This theorem is a special case of Euler's theorem (see below).
Definition. For $m \in \mathbb{N}$, we define the Euler (totient) function $\varphi(m)$ as follows: $\varphi(m)$ is the number of integers between 1 and m that are relatively prime to m :

$$
\varphi(m):=|\{k: 1 \leq k<m, \operatorname{gcd}(k, m)=1\}| .
$$

Theorem (Euler's Theorem). Let $m \in \mathbb{N}, m \geq 2$, and let a be relatively prime to m. Then,

$$
a^{\varphi(m)} \equiv 1(\bmod m) .
$$

Proof. Indeed, the set $S:=\{k: 1 \leq k<m, \operatorname{gcd}(k, m)=1\}=\mathbb{Z}_{m}^{*}$ (the set of invertible elements of \mathbb{Z}_{m}) forms a group under multiplication modulo m. Hence the claim follows from Lagrange's theorem (which we proved in the commutative case).

Remark. It is not hard to find the following explicit formula for $\varphi(m)$: If $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ where p_{i} are distinct primes, then

$$
\varphi(m)=m \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) .
$$

The following theorem can be proved from Theorem (\mathbb{Z}) above.
Theorem (GCD Theorem). Let a and b be non-zero integers. Then there are integers x and y such that $\operatorname{gcd}(a, b)=a x+b y$. In fact, writing $d=\operatorname{gcd}(a, b)$, we have

$$
\{a x+b y: x, y \in \mathbb{Z}\}=d \mathbb{Z}:=\{d n: n \in \mathbb{Z}\}
$$

Remark. The Extended Euclidean Algorithm computes one such pair (x, y) as well as $\operatorname{gcd}(a, b)$ - see www.millersv.edu/~bikenaga/absalg/exteuc/exteucth.html
Corollary. The greatest common divisor of a and b is a multiple of all common divisors of a and b.

Corollary. The (Diophantine) equation $a x+b y=c$ has a solution (in integers x, y) if and only if $g c d(a, b)$ divides c.
In other words, the congruence $a x \equiv c(\bmod m)$ has a solution x if and only if $g c d(a, m)$ divides c; and in that case there are exactly $\operatorname{gcd}(a, m)$ different solutions modulo m.
Theorem. If a divides $b \cdot c$, and a and b are relatively prime, then a divides c.
Proof. By the GCD Theorem, there are x, y such that $1=\operatorname{gcd}(a, b)=a x+b y$. Hence $c=a c x+b c y$, and since both $a c x$ and $b c y$ are divisible by a, so is c.
Corollary. If a prime p divides $b \cdot c$, then either p divides b or p divides c.
Corollary (The Fundamental Theorem of Arithmetic). Any integer greater than 1 can be factored uniquely as a product of primes.

