Notations: we write ZT = {0,1,2,...}, N={1,2,3,...}, 2N:={2n;n € N} = {2,4,6,...},
and 2N — 1:={2n— 1;n € N} = {1,3,5,...}.

Properties

In the following, o : S x S — S is a binary operation on a nonempty set S. We write a o b
instead of the too formal o(a, b).

We say that o is associative if (a ob)oc =ao (boc) for all a,b,¢c € S. This is the most
important property, and all our operations below will share that.

Definition. Let o be an associative binary operation on a nonempty set S. Then the pair
(S,0) is a called a semigroup. (When the operation o is clear from the context, we often
Just say that S is a semigroup.)

Remark. Implicit in the word “binary operation” is the following property - often called
closure: for all a,b € S, aobe S.

We say that o is commutative if aob =boa for all a,b € S. [Warning: our operations are
not assumed to be commutative unless explicitly stated so!]

We say that (.S, o) has an identity (or “S has an identity” for short) if there is an element
e € S such that eox = x and r oe = x for all x € S. An identity is also called a neutral
element. It is easy to see that when exists, the identity is unique. [Indeed, if e and €’ are
identities, then e = eo ¢’ =¢'.] A semigroup with identity is sometimes called a monoid.

When a semigroup (.5, o) has an identity e, we say that an element a € S has an inverse (or
“a is invertible”, or “a is a unit”) if there is a b € S such that aob = e and boa = e; it is easy
to see that if exists, such an element b is unique; we usually write a~! for this b and call it the
inverse of a. [Indeed, if b and 0" are two such elements, then b = bo (aob’) = (boa)olt/ = V']
The set of all invertible elements of S is denoted by S*.

Given two binary operations + and - on the same set S, we say that - distributes over + if
a-(b+c)=a-b+a-cand (b+c)-a=b-a+c-aforallabces.

Examples. (R,+), (Z,+), (Z*,4), (N,-), 2N = 1,-), (Zn,+), (Zpn,-), as well as the set
of n x n real matrices with respect to matrix-multiplication are semigroups with identity.
(N, +) and (2N, -) are semigroups without identity.

Structures

Definition. Let o be an associative binary operation on a nonempty set G. The pair (G, o)
s a called a group if G has an identity and each element of G has an inverse. The number
of elements in G is called the order of the group. When o is commutative, we say that the
group (G, o) is commutative or Abelian.



Remark. We often use - to denote the group operation and call it multiplication. Then we
may just write ab for a-b, and sometimes we write 1 to denote the identity. For commutative
groups, we often use + to denote the operation and call it addition, write 0 for the identity,
and (—a) for the inverse of a.

Theorem. Let (S,0) be a semigroup with identity (a monoid). Then (S*,0) is a group.

Examples. Of the above semigroup examples, the only ones that are groups are (R, +),
(Z,+) and (Z,, +). Here are a few more standard Abelian groups: (Q, +), (C, +), (Q\{0},-),
(R\ {0},-), (C\ {0},-). The set of all k x k non-singular real matrices forms a non-Abelian
group with respect to matrix-multiplication; so does the set of all symmetries of an equilateral
triangle under composition.

A useful (counter)example: Let S be a set containing at least two elements. Define a binary
operation - on S by (Vz,y € S)x -y = x. How do the group axioms fare for S equipped with
this operation? Firstly, - is clearly associative. Furthermore, the condition |S| > 2 implies
that S has no left-identity (hence no identity), but every element of S is a right-identity.
This example may be useful for discarding some hastily made conjectures about groups. One
could add an identity e to S and still keep its weirdness.

Definition. Let R be a set equipped with two binary operations + and - such that
(1) (R,+) is a commutative group (we will always write 0 for its neutral element)
(2) (R,-) is a semigroup

(3) - distributes over +

Then (R, +,-) is called a ring. (We often just say R is a ring.)

Furthermore, if - is also commutative, then R is a commutative ring.
R is a ring with identity of R has a multiplicative identity.

Remark. It is easy to see that in a ring (R, +,-) one always has 0-a =0 and a -0 = 0 for
all @ € R. [Indeed, for any a € R, 0-a=(0+0)-a=0-a+ 0-a; use cancellation, and do
the same from the left of 0.] Hence, if a ring has at least two elements and it has an identity,
then the identity is different from 0. If in a ring there are non-zero elements a and b such
that a - b = 0, then such elements are called zero divisors.

Definition. Let (F,+,-) be a commutative ring with an identity 1 # 0. If all nonzero
elements of F' are invertible, then the ring is called a field. Hence in a field (F,+, )

(i) (F,4+) is a commutative group

(i) (F\{0},-) is a commutative group

(1i) - distributes over +

Remark. It is easy to see that (i)-(iii) are not only corollaries of the field definition but are
equivalent to it.

Examples. The set of all k£ x k real matrices is a ring (under matrix addition and multipli-
cation). It is a non-commutative ring with identity and it has zero divisors.

(Z,+,-) is a commutative ring with identity and it has no zero divisors. In view of this
example, such structures are called integral domains. Contrast this infinite example with
the following fact:

Exercise. Prove that a finite integral domain (D, +,-) is a field. [Hint: Given a nonzero
a € D, prove the existence of a™! by considering the set aD := {azx : x € D} ]



Subgroups, subrings, subfields

Definition. Let (G, 0) be a group. A subset H of G is a subgroup if H itself is a group with
respect to the same operation o. We write (H,o) < (G,o0), or simply write H < G when it
is clear what the operation is. H < G means H < G and H # G (proper subgroup).

It is easy to see that H C G forms a subgroup with respect to o if and only if H is nonempty;,
H is closed under o, and H is closed under taking inverse (in (G,o)). The following test
provides a more compact form:

Theorem (Closure Test). Let (G, 0) be a group and let H C G be nonempty. Then (H, o)
is a group if and only if a=*ob € H for all a,b € H.

With a similar definition for subrings and subfields, one can show that a nonempty subset
of a ring forms a subring if and only if it is closed under subtraction and multiplication, and
a subset of a field forms a subfield if and only if it has at least two elements and is closed
under subtraction and division (by nonzero elements). We use the same notation H < G
when it is clear from the context of whether it means subgroup or subring or subfield.

Examples: (2Z,+) < (Z,+) < (Q,+) < (R, 4+) < (C,+) and (Q*, ) < (R*,-) < (C*,-) are
subgroup relations, (Q,+,-) < (R,+,:) < (C,+,-) are subfield relations, while (Z,+,-) is
only a subring of the field (and hence ring) (R, +, ).

Theorem (Z). The only subgroups of (Z,+) are the sets dZ :={dn:n € Z},d=0,1,2,...
[Hint for a proof: let I < Z and start with the smallest positive element of I (if any).]

Corollary. Let (G,-) be a group with identity e, and let a € G be arbitrary. The set
{k € Z : af = e} is clearly a subgroup of Z, and hence it is of the form dZ for some
nonnegative integer d. When this d is positive, we say that the order of a is d, and we write
o(a) = d. Thus, the order of a is the smallest positive integer d (if any) such that a® = e.

Theorem (Lagrange). Let G be a finite group of order n with identity e. Then, a™ = e for
all a € G. Hence, the order of any element of G is a divisor of n. More generally, the order
of any subgroup of G divides n.

Remark. One can get an easy proof for commutative groups by using the following lemma.
(For non-commutative groups the standard proofs use the notion of cosets.)

Lemma. Let (G,0) be a group and let a € G be arbitrary. The map f,: G — G :x+— aox
s a bijection.

Proof of Lagrange’s theorem in the commutative case: Let a € G. By the previous lemma,
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and the claim follows. O



Some number-theoretical consequences

The greatest common divisor of a and b is denoted by gcd(a, b).

Theorem (Fermat’s Little Theorem). Let p be prime and let a be not divisible by p.
Then,
a’~' =1 (mod p).

This theorem is a special case of Euler’s theorem (see below).

Definition. For m € N, we define the Euler (totient) function p(m) as follows: p(m) is the
number of integers between 1 and m that are relatively prime to m:

e(m) = [{k:1<k<m, ged(k,m) = 1}|.

Theorem (Euler’s Theorem). Let m € N, m > 2, and let a be relatively prime to m.
Then,
a?™ =1 (mod m).

Proof. Indeed, the set S := {k:1 <k <m, gced(k,m) = 1} = Z, (the set of invertible
elements of Z,,) forms a group under multiplication modulo m. Hence the claim follows from
Lagrange’s theorem (which we proved in the commutative case). O

Remark. It is not hard to find the following explicit formula for ¢(m): If m = pi'ps? - - - p*
where p; are distinct primes, then

o(m) =m; (1-2).

The following theorem can be proved from Theorem (Z) above.

Theorem (GCD Theorem). Let a and b be non-zero integers. Then there are integers x
and y such that ged(a,b) = ax + by. In fact, writing d = ged(a,b), we have

{ax +by : x,y € Z} = dZ = {dn : n € Z}.
Remark. The Extended Euclidean Algorithm computes one such pair (z,y) as well as
gcd(a,b) — see www.millersv.edu/~bikenaga/absalg /exteuc/exteucth.html

Corollary. The greatest common divisor of a and b is a multiple of all common divisors of
a and b.

Corollary. The (Diophantine) equation ax + by = ¢ has a solution (in integers x,y) if and
only if ged(a,b) divides c.

In other words, the congruence ax = ¢ (modm) has a solution x if and only if ged(a, m)
divides ¢; and in that case there are exactly ged(a,m) different solutions modulo m.

Theorem. If a divides b- ¢, and a and b are relatively prime, then a divides c.

Proof. By the GCD Theorem, there are z,y such that 1 = gcd(a,b) = ax + by. Hence
¢ = acx + bey, and since both acx and bey are divisible by a, so is c. O

Corollary. If a prime p divides b - ¢, then either p divides b or p divides c.

Corollary (The Fundamental Theorem of Arithmetic). Any integer greater than 1
can be factored uniquely as a product of primes.



