Integers that can be written as the sum of two squares

Theorem (Fermat). Every prime of the form $4 k+1$ is the sum of two squares. A positive integer n is the sum of two squares if and only if all prime factors of the form $4 k-1$ have an even exponent in the prime-factorization of n.

Remark. Fermat's proof using infinite descent was not complete. Euler completed the proof (almost 100 years later).

Proof steps:

Let $S:=\left\{a^{2}+b^{2}: a, b \in \mathbb{Z}\right\}$.

1. If $a \equiv 3(\bmod 4)$, then $a \notin S$.
2. If $a, b \in S$, then $a b \in S$.
3. [The crux of the proof] If $\operatorname{gcd}(a, b)=1$ (co-primes), then all positive divisors of $a^{2}+b^{2}$ are in S.
4. [Wilson's Theorem] If p is prime then $(p-1)!\equiv-1(\bmod p)$
5. If p is prime and $p=4 k+1$ for some $k \in \mathbb{Z}$, then
(a) p divides $[(2 k)!]^{2}+1$.
(b) [Fermat's Theorem] $p \in S$.
6. $n \in \mathbb{Z}^{+}$is in S if and only if all prime factors of the form $4 k-1$ have an even exponent in the prime-factorization of N.

Proofs

Proof of Part 1: trivial mod 4 arithmetic.
Proof of Part 2: $\left(a^{2}+b^{2}\right)\left(u^{2}+v^{2}\right)=(a u-b v)^{2}+(a v+b u)^{2}$.
[Pythagorean theorem for $\alpha \beta$, where $\alpha=a+i b$ and $\beta=u+i v$.]
The proof of Part 3 is long (see the LBB); it uses the Pigeonhole Principle.
Proof of Part 4: see Wilson's theorem and Fermat's "little theorem" (and the FROGS HW).
Proof of Part 5a: follows from Wilson's Theorem.
Proof of Part 5b: follows from Parts 5a and 3.
Proof of Part 6: indeed, Part 3 said: If $n=a^{2}+b^{2}$ with co-prime a, b, then n has no divisor (hence no prime factor) of the form $4 k-1$. Now, for a general $n=a^{2}+b^{2}$, separate the square and the square-free parts of n.

Homework: Prove that if $n \in S$ and $n=a b$ with a and b relatively prime (coprime), then both a and b are in S too.

Remark. Just as in part 1 , mod 8 arithmetic shows that not all positive integers are the sum of three squares. In fact (Gauss), n is not the sum of three squares iff $n=4^{k} m$ with $m \equiv 7(\bmod 8)$ - but the only if part is not easy. However, the following theorem of Lagrange (already conjectured by Fermat) is much easier:

Lagrange's Four Square Theorem (1770): every positive integer can be written as the sum of four squares (of integers).

And here are two theorems for the number theory connoisseur:
Jacobi's Two Square Theorem: The number of representations of a positive integer as the sum of two squares is equal to four times the difference of the numbers of divisors congruent to 1 and 3 modulo 4.

Jacobi's Four Square Theorem: The number of representations of a positive integer as the sum of four squares is equal to eight times the sum of all its divisors which are not divisible by 4 .

