Tonight's topic: Finite Rotation Groups in \mathbb{R}^3

Notation: SO(d) is the group of rotations in \mathbb{R}^d fixing the origin.

We will describe all finite subgroups of SO(3).

Some related facts to be discussed only next week:

- A finite group of isometries in \mathbb{R}^d must fix a point.
- An isometry fixing the origin is a linear operator (transformation) corresponding to an orthogonal matrix the group O(d).
- The precise definition of direct isometries fixing the origin (the matrix has determinant 1) the group SO(d).
- The only direct isometries of \mathbb{R}^3 fixing the origin are rotations (trivial in \mathbb{R}^2).
- In particular: the composition of two rotations is a single rotation. (This is the only statement we will use on faith tonight.)
- Corollary: Rotations of \mathbb{R}^3 fixing the origin form a group the group SO(3).
- The proof of many of these statements use linear algebra: orthogonal matrices and eigenvalues.