A completely inefficient primality test (Wilson's theorem)

Theorem. Let $p \in \mathbb{N}$, $p \geq 2$.

- (*) If p is prime, then $(p-1)! \equiv -1 \pmod{p}$.
- (**) If p is composite, then $(p-1)! \equiv 0 \pmod{p}$.

Proof.

(**) is trivial.

For (*), prove and use the following simple lemma.

Lemma. Let G be a finite group with identity e. Then,

$$\prod_{g \in G} = \prod_{g \in G \atop g^2 = e}$$

(Find both places in the proof where the fact that p is prime is used.)