A completely inefficient primality test (Wilson's theorem)

Theorem. Let $p \in \mathbb{N}, p \geq 2$.
(*) If p is prime, then $(p-1)!\equiv-1(\bmod p)$.
$\left(^{* *}\right)$ If p is composite, then $(p-1)!\equiv 0(\bmod p)$.

Proof.

$(* *)$ is trivial.
For $\left(^{*}\right)$, prove and use the following simple lemma.
Lemma. Let G be a finite group with identity e. Then,

$$
\prod_{g \in G}=\prod_{\substack{g \in G \\ g^{2}=e}}
$$

(Find both places in the proof where the fact that p is prime is used.)

