This discussion is about the space \mathbb{R}^{d} (vectors and matrices have real entries), but most readily generalizes to finite dimensional vector spaces (and matrices) over arbitrary fields F.

1. A function $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is linear if it satisfies the following two conditions: T is additive and T is homogeneous.
The first condition is that T is a homomorphism from \mathbb{R}^{d} to \mathbb{R}^{d} (here the word homomorphism only expresses that the structure of \mathbb{R}^{d} as an additive group is preserved):

$$
\left(\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}\right) T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y}) \quad \text { (additivity) }
$$

The second condition is

$$
\left(\forall \mathbf{x} \in \mathbb{R}^{d}\right)(\forall c \in \mathbb{R}) T(c \mathbf{x})=c T(\mathbf{x}) \quad \text { (homogeneity). }
$$

Sometimes we combine these two conditions into one:

$$
\left(\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}\right)\left(\forall c_{1}, c_{2} \in \mathbb{R}\right) T\left(c_{1} \mathbf{x}+c_{2} \mathbf{y}\right)=c_{1} T(\mathbf{x})+c_{2} T(\mathbf{y})
$$

- the function T preserves linear combinations.

This combined property may also be phrased as " T is a homomorphism," but this time the word homomorphism expresses the stronger demand that the structure of \mathbb{R}^{d} as a vector space be preserved (both vector addition and scalar multiplication are preserved). A linear function on \mathbb{R}^{d} is also called a linear transformation on \mathbb{R}^{d} or a linear operator on \mathbb{R}^{d}.
2. The unit vectors $\mathbf{e}^{1}=(1,0,0, \ldots, 0), \mathbf{e}^{2}=(0,1,0, \ldots, 0), \ldots, \mathbf{e}^{d}=(0,0,0, \ldots, 1)$ form a basis in \mathbb{R}^{d} : every vector can be expressed in a unique way as a linear combination of the unit vectors - indeed, $\left(x_{1}, x_{2}, \ldots, x_{d}\right)=x_{1} \mathbf{e}^{1}+x_{2} \mathbf{e}^{2}+\ldots+x_{d} \mathbf{e}^{d}$.
Hence, if a linear operator (on \mathbb{R}^{d}) is zero on all unit vectors, then it's zero everywhere. Consequently, if two linear operators agree on all unit vectors, then they agree everywhere.
3. Given a linear operator T on \mathbb{R}^{d}, we construct a $d \times d$ matrix A whose j th column contains $T\left(\mathbf{e}^{j}\right)(j=1,2, \ldots, d)$. (When an ordered basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right)$ other than the standard basis is used, one should phrase it as "the j th column contains the coordinates of the image $T\left(\mathbf{b}_{j}\right)$ of the j th basis vector - expressed in B itself.) Thus, by the rules of matrix multiplication, $T\left(\mathbf{e}^{j}\right)=A \mathbf{e}^{j},(j=1,2, \ldots, d)$, and hence $T(\mathbf{x})=A \mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^{d}$. This matrix A is the "coordinatized form" of the operator T (in the standard basis).

$$
\begin{aligned}
& \text { Examples } \quad I: \text { identity on } \mathbb{R}^{2} \leftrightarrow \\
& I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \leftrightarrow \quad I(x, y)=(x, y) \\
& T_{1}: \text { rotation of } \mathbb{R}^{2} \text { around } \mathbf{0} \text { by } \pi / 2 \leftrightarrow \\
& A_{1}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \quad \leftrightarrow T_{1}(x, y)=(-y, x) \\
& T_{2} \text { : reflection about } y=x \leftrightarrow \\
& A_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \leftrightarrow \quad T_{2}(x, y)=(y, x) \\
& T_{3}: \text { orthogonal projection onto the } x \text {-axis } \leftrightarrow \\
& A_{3}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \leftrightarrow \quad T_{3}(x, y)=(x, 0)
\end{aligned}
$$

The fourth operator is not an isometry, but the first three are; they satisfy the orthogonality condition (see next page): $A^{-1}=A^{t}$, that is, $A A^{t}=A^{t} A=I$. The first two are direct isometries (determinant $=1$), and the third one is an inverse isometry (determinant $=-1$).

Orthogonal matrices

Definition. $A d \times d$ matrix A is orthogonal if the length of every column vector is 1, and any two column vectors have dot product 0 .

A more elegant form: The columns of A form an orthonormal basis of the vector space \mathbb{R}^{d}. Writing A^{t} for the transpose of A, the orthogonality condition can be written as $A^{t} A=I$.

Theorem 1. A matrix A is orthogonal if and only if $A^{-1}=A^{t}$, that is, the three conditions $A^{t} A=I, A A^{t}=I$, and $A^{-1}=A^{t}$ are equivalent.
The determinant of an orthogonal matrix is 1 or -1 .
Proof. It is enough to show that A is invertible, since then multiplying by A^{-1} (from left and from right) leads to the equivalence. Now, invertibility of an orthogonal matrix A (as well as $\operatorname{det}(A)= \pm 1$) follows from the following simple lemmas of linear algebra.

Lemma. The identity I satisfies $\operatorname{det}(I)=1$.
For any square matrix A, $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.
Lemma. Determinant is multiplicative: For any two $d \times d$ matrices A and B,

$$
\operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)
$$

In other words, determinant is a homomorphism from the set of all $d \times d$ matrices to the set of real numbers (both considered only as multiplicative structures).

Lemma. A square matrix is invertible if and only if its determinant is not 0 .
Theorem 2. The product of two orthogonal matrices is orthogonal.
Proof.

$$
(A B)^{-1}=B^{-1} A^{-1}=B^{t} A^{t}=(A B)^{t}
$$

Remark. Note the important rule we used: When either inverting or transposing a product, one must reverse order!

Isometries and linear algebra

We will use the (somewhat ridiculous) abbreviation ifo for an isometry fixing the origin.

Short summary

The Following Are Equivalent

- f is an ifo.
- f preserves dot products.
- f is linear with an orthogonal matrix.

Detailed statements

Theorem 3. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is an ifo if and only if it preserves the dot product (and hence the lengths) of vectors:

$$
\left(\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}\right) f(\mathbf{x}) \cdot f(\mathbf{y})=\mathbf{x} \cdot \mathbf{y}
$$

Theorem 4. An ifo is linear.
Theorem 5. If f is linear with matrix A, then f is an ifo if and only if A is orthogonal ($A^{-1}=A^{t}$).

Note that so far everything was about arbitrary dimensions and isometries (direct or inverse).
Theorem 6. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an ifo. Then, f is a direct isometry (the determinant of the matrix of f is 1) if and only if f is a rotation.

Definition. The set of all $d \times d$ orthogonal matrices is denoted by $O(d)$. It is a group with respect to matrix multiplication, called the orthogonal group.
The set of all matrices in $O(d)$ with determinant 1 clearly form a subgroup. It is denoted by $S O(d)$ and is called the special orthogonal group.
Because of the equivalences above, we often use $O(d)[S O(d)]$ to also denote the set of all [direct $]$ isometries of \mathbb{R}^{d} fixing the origin.

Thus, Theorem 6 can be restated as follows:
Theorem 7. Let A be a 3×3 real matrix. Then, $A \in S O(3)$ if and only if the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}: \mathbf{x} \mapsto A \mathbf{x}$ is a rotation (about some axis through the origin).

Using Theorem 2, we obtain the following non-trivial corollary.
Corollary 8. The product of two rotations fixing the origin is again a rotation.
("Product," of course, means composition here.)

Proofs

To simplify notation, we will write a^{\prime} for $f(a), x^{\prime}$ for $f(x)$, etc.
Proof of Theorem 3. Let f be an ifo on \mathbb{R}^{d}. Since the origin is fixed by f, the length of every vector is also preserved (since length is distance from the origin).
Now let $x, y \in \mathbb{R}^{d}$, and write $x^{\prime}=f(x)$ and $y^{\prime}=f(y)$. Since

$$
\begin{array}{r}
\|\mathrm{x}-\mathrm{y}\|^{2}=(\mathrm{x}-\mathrm{y}) \cdot(\mathrm{x}-\mathrm{y})=\mathrm{x} \cdot \mathrm{x}+\mathrm{y} \cdot \mathrm{y}-2 \mathrm{x} \cdot \mathrm{y}=\|\mathrm{x}\|^{2}+\|\mathrm{y}\|^{2}-2 \mathrm{x} \cdot \mathrm{y}, \\
\left\|\mathrm{x}^{\prime}-\mathrm{y}^{\prime}\right\|^{2}=\left(\mathrm{x}^{\prime}-\mathrm{y}^{\prime}\right) \cdot\left(\mathrm{x}^{\prime}-\mathrm{y}^{\prime}\right)=\mathrm{x}^{\prime} \cdot \mathrm{x}^{\prime}+\mathrm{y}^{\prime} \cdot \mathrm{y}^{\prime}-2 \mathrm{x}^{\prime} \cdot \mathrm{y}^{\prime}=\left\|\mathrm{x}^{\prime}\right\|^{2}+\left\|\mathrm{y}^{\prime}\right\|^{2}-2 \mathrm{x}^{\prime} \cdot \mathrm{y}^{\prime},
\end{array}
$$

and $\|x-y\|^{2}=\left\|x^{\prime}-y^{\prime}\right\|^{2},\|x\|^{2}=\left\|x^{\prime}\right\|^{2},\|y\|^{2}=\left\|y^{\prime}\right\|^{2}$, so $x \cdot y=x^{\prime} \cdot y^{\prime}$.
Conversely, if f preserves dot product, then, in particular, it preserves length, and thus it fixes the origin (the only vector of zero length). Also, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$,

$$
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|^{2}=\mathbf{x} \cdot \mathbf{x}+\mathbf{y} \cdot \mathbf{y}-2 \mathbf{x} \cdot \mathbf{y}
$$

so distance is also preserved. Thus, f is an ifo.

Proof of Theorem 4. (We'll use the same 'prime' notations as in the previous proof.) First, let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ and let $\mathbf{z}=\mathbf{x}+\mathbf{y}$. We need to show that $\mathbf{z}^{\prime}=\mathbf{x}^{\prime}+\mathbf{y}^{\prime}$. Now,

$$
0=[\mathbf{z}-(\mathbf{x}+\mathbf{y})] \cdot[\mathbf{z}-(\mathbf{x}+\mathbf{y})]=\mathbf{x} \cdot \mathbf{x}+\mathbf{y} \cdot \mathbf{y}+\mathbf{z} \cdot \mathbf{z}+2 \mathbf{x} \cdot \mathbf{y}-2 \mathbf{x} \cdot \mathbf{z}-2 \mathbf{y} \cdot \mathbf{z}
$$

Since f preserves dot products (Theorem 3), the right-hand side in the last equation equals

$$
=\mathbf{x}^{\prime} \cdot \mathbf{x}^{\prime}+\mathbf{y}^{\prime} \cdot \mathbf{y}^{\prime}+\mathbf{z}^{\prime} \cdot \mathbf{z}^{\prime}+2 \mathbf{x}^{\prime} \cdot \mathbf{y}^{\prime}-2 \mathbf{x}^{\prime} \cdot \mathbf{z}^{\prime}-2 \mathbf{y}^{\prime} \cdot \mathbf{z}^{\prime}=\left[\mathbf{z}^{\prime}-\left(\mathbf{x}^{\prime}+\mathbf{y}^{\prime}\right)\right] \cdot\left[\mathbf{z}^{\prime}-\left(\mathbf{x}^{\prime}+\mathbf{y}^{\prime}\right)\right]
$$

Thus, $\left[\mathbf{z}^{\prime}-\left(\mathbf{x}^{\prime}+\mathbf{y}^{\prime}\right)\right] \cdot\left[\mathbf{z}^{\prime}-\left(\mathbf{x}^{\prime}+\mathbf{y}^{\prime}\right)\right]=0$, that is, $\mathbf{z}^{\prime}=\left(\mathbf{x}^{\prime}+\mathbf{y}^{\prime}\right)$.
Similarly, let $\mathbf{x} \in \mathbb{R}^{d}$ and $c \in \mathbb{R}$. Write $\mathbf{z}=c \mathbf{x}$. We need to show that $\mathbf{z}^{\prime}=c \mathbf{x}^{\prime}$. Now, $0=[\mathbf{z}-c \mathbf{x}] \cdot[\mathbf{z}-c \mathbf{x}]=c^{2} \mathbf{x} \cdot \mathbf{x}-2 c \mathbf{x} \cdot \mathbf{z}+\mathbf{z} \cdot \mathbf{z}=c^{2} \mathbf{x}^{\prime} \cdot \mathbf{x}^{\prime}-2 c \mathbf{x}^{\prime} \cdot \mathbf{z}^{\prime}+\mathbf{z}^{\prime} \cdot \mathbf{z}^{\prime}=\left[\mathbf{z}^{\prime}-c \mathbf{x}^{\prime}\right] \cdot\left[\mathbf{z}^{\prime}-c \mathbf{x}^{\prime}\right]=0$ proving $\mathbf{z}^{\prime}=c \mathbf{x}^{\prime}$.

Proof of Theorem 5.

Part I. Assume f is an ifo. Then f preserves length and dot product (by Theorem 3). Thus, in particular, f preserves the unit length of the standard basis vectors $\mathbf{e}_{i}, i=1, \ldots, d$, so the diagonal elements in the matrix $A^{t} A$ are all 1 . Similarly, for $i \neq j$, the zero dot product $\mathbf{e}_{i} \cdot \mathbf{e}_{j}$ is preserved, so the rest of the matrix $A^{t} A$ is all zero. Thus, $A^{t} A=I$.
Part II. Assume A is orthogonal. We will show that f preserves dot product (and hence it's an ifo). Indeed, let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$. Using the matrix-multiplication form $\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{t} \mathbf{y}$ (we indicate matrix multiplication by dropping the dot product symbol \cdot), we get

$$
f(\mathbf{x}) \cdot f(\mathbf{y})=A \mathbf{x} \cdot A \mathbf{y}=(A \mathbf{x})^{t} A \mathbf{y}=\left(\mathbf{x}^{t} A^{t}\right) A \mathbf{y}=\mathbf{x}^{t}\left(A^{t} A\right) \mathbf{y}=x^{t} I \mathbf{y}=\mathbf{x}^{t} \mathbf{y}=\mathbf{x} \cdot \mathbf{y}
$$

Remark.

Elements of $S O(d)$, that is, orthogonal $d \times d$ matrices with determinant 1, are called "rotations" in d-space. It is easy to see that for $d=2$ they indeed correspond to rotations about the origin. We show now that for $d=3$ they also correspond to rotations in the geometric sense.

Let A be a 3×3 orthogonal matrix with determinant 1 . We claim that it correspond to a linear operator T which is a rotation, that is, T fixes the points of a line through the origin, and rotates the rest of the 3 -space about that line.

Indeed,
$\operatorname{det}(A-I)=\operatorname{det}(A-I) \operatorname{det}\left(A^{t}\right)=\operatorname{det}\left[(A-I) A^{t}\right]=\operatorname{det}\left(I-A^{t}\right)=\operatorname{det}(I-A)=(-1)^{3} \operatorname{det}(A-I)$.
Hence, $\operatorname{det}(A-I)=0$, that is, 1 is an eigenvalue of A.
Thus, A indeed fixes the points of a line ℓ through the origin. If we choose ℓ to be the third axis of a new Cartesian coordinate system, the new matrix B of T will contain the vector $(0,0,1)$ as its last column, and since B is also orthogonal (Why?), its last row is also ($0,0,1$). The remaining 2×2 submatrix is in $S O(2)$ (Why?) and hence a rotation.

