This discussion is about the space R? (vectors and matrices have real entries), but most
readily generalizes to finite dimensional vector spaces (and matrices) over arbitrary fields F'.

1. A function T : R? — R? is linear if it satisfies the following two conditions: T is additive
and T is homogeneous.

The first condition is that T is a homomorphism from R? to R? (here the word homomorphism
only expresses that the structure of R? as an additive group is preserved):

(vx,y e RN T(x+y) =T(x)+T(y) (additivity).
The second condition is
(vx € RY) (Ve € R)T(ex) = ¢T'(x) (homogeneity).
Sometimes we combine these two conditions into one:
(vx,y € RY)(Ver, e € R)T(e1x + coy) = a1 T(x) + ¢ T (y)

— the function T' preserves linear combinations.

This combined property may also be phrased as “I" is a homomorphism,” but this time the
word homomorphism expresses the stronger demand that the structure of R? as a wector
space be preserved (both vector addition and scalar multiplication are preserved). A linear
function on R? is also called a linear transformation on R? or a linear operator on R%.

2. The unit vectors e! = (1,0,0,...,0), € = (0,1,0,...,0), ..., e? = (0,0,0,...,1) form a
basis in R?: every vector can be expressed in a unique way as a linear combination of the

unit vectors — indeed, (21, s, ...,74) = v1€ + 20?4+ ... + z40%

Hence, if a linear operator (on RY) is zero on all unit vectors, then it’s zero everywhere.
Consequently, if two linear operators agree on all unit vectors, then they agree everywhere.

3. Given a linear operator 7' on RY, we construct a d x d matrix A whose jth column
contains T'(e’) (j = 1,2,...,d). (When an ordered basis B = (by,...,by) other than the
standard basis is used, one should phrase it as “the jth column contains the coordinates of
the image T'(b;) of the jth basis vector — expressed in B itself.) Thus, by the rules of matrix
multiplication, T'(e’) = Ae’, (j = 1,2,...,d), and hence T'(x) = Ax for all vectors x € R
This matrix A is the “coordinatized form” of the operator T' (in the standard basis).

Examples I: identity on R? « [ = [ (1) (1) } - I(z,y) = (z,y)

Ty: rotation of R? around 0 by 7/2 « A, = (1) _(1) } o Ti(r,y) = (~y,2)
: [0 1
T,: reflection about y =x <« Ay = 10 } = Ty(z,y) = (y,z)
_— : (10
T3: orthogonal projection onto the z-axis < Az = 00 } — T3(z,y) = (x,0)

The fourth operator is not an isometry, but the first three are; they satisfy the orthogonality
condition (see next page): A~! = A! that is, AA" = A'A = [. The first two are direct
isometries (determinant = 1), and the third one is an inverse isometry (determinant = —1).



Orthogonal matrices

Definition. A d x d matriz A is orthogonal if the length of every column vector is 1, and
any two column vectors have dot product 0.

A more elegant form: The columns of A form an orthonormal basis of the vector space R?.
Writing A? for the transpose of A, the orthogonality condition can be written as A'A = I.

Theorem 1. A matriz A is orthogonal if and only if A= = A, that is, the three conditions
ATA =1, AA* =1, and A~ = A! are equivalent.

The determinant of an orthogonal matriz s 1 or -1.

Proof. It is enough to show that A is invertible, since then multiplying by A™! (from left
and from right) leads to the equivalence. Now, invertibility of an orthogonal matrix A (as
well as det(A) = £1) follows from the following simple lemmas of linear algebra.

Lemma. The identity I satisfies det(I) = 1.
For any square matriz A, det(A") = det(A).

Lemma. Determinant is multiplicative: For any two d x d matrices A and B,
det(A - B) = det(A) - det(B).

In other words, determinant is a homomorphism from the set of all d x d matrices to the set
of real numbers (both considered only as multiplicative structures).

Lemma. A square matriz is invertible if and only if its determinant is not 0.
Theorem 2. The product of two orthogonal matrices is orthogonal.

Proof.
(AB)™' = B™'A™' = B'A' = (AB)".

Remark. Note the important rule we used: When either inverting or transposing a product,
one must reverse order!



Isometries and linear algebra

We will use the (somewhat ridiculous) abbreviation ifo for an isometry fizing the origin.

Short summary

The Following Are Equivalent

e f is an ifo.
e f preserves dot products.

e f is linear with an orthogonal matrix.

Detailed statements

Theorem 3. A function f : R? — R? is an ifo if and only if it preserves the dot product
(and hence the lengths) of vectors:

(vx,y e RY) f(x)- fly) =x"y
Theorem 4. An ifo is linear.

Theorem 5. If f is linear with matriz A, then f is an ifo if and only if A is orthogonal
(A~ = A).

Note that so far everything was about arbitrary dimensions and isometries (direct or inverse).

Theorem 6. Let f: R3> — R3 be an ifo. Then, f is a direct isometry (the determinant of
the matriz of f is 1) if and only if f is a rotation.

Definition. The set of all d x d orthogonal matrices is denoted by O(d). It is a group with
respect to matrix multiplication, called the orthogonal group.

The set of all matrices in O(d) with determinant 1 clearly form a subgroup. It is denoted by
SO(d) and is called the special orthogonal group.

Because of the equivalences above, we often use O(d) [SO(d)] to also denote the set of all
[direct] isometries of R? fiving the origin.

Thus, Theorem 6 can be restated as follows:

Theorem 7. Let A be a 3 X 3 real matriz. Then, A € SO(3) if and only if the function
f: R — R?:x+— Ax is a rotation (about some azis through the origin).

Using Theorem 2, we obtain the following non-trivial corollary.

Corollary 8. The product of two rotations fixzing the origin is again a rotation.

(“Product,” of course, means composition here.)



Proofs
To simplify notation, we will write a’ for f(a), 2’ for f(z), etc.

Proof of Theorem 3. Let f be an ifo on R?. Since the origin is fixed by f, the length of
every vector is also preserved (since length is distance from the origin).
Now let z,y € R, and write 2/ = f(x) and 3 = f(y). Since

e~y = (x—y) (x—y) =x x+y-y -2y = x|+ |y]]* ~ 2x-,
I~ yP =~y (¢ =y =X X by oy = ox ey = X Y -2y

and [[x —y[* =[x =y [x[* = X% Iy [* = [y'[I*, so x -y =x"-y".

Conversely, if f preserves dot product, then, in particular, it preserves length, and thus it
fixes the origin (the only vector of zero length). Also, for any x,y € RY,

dx,y)=|x—-y[’=x-x+y - y—2x"y,

so distance is also preserved. Thus, f is an ifo. O

Proof of Theorem 4. (We'll use the same ‘prime’ notations as in the previous proof.)
First, let x,y € R? and let z = x +y. We need to show that z’ = x’ + y’. Now,

O=z—(x+y) - z2—x+y))=xx+y y+z-2+2x-y—2x-z—2y-z.
Since f preserves dot products (Theorem 3), the right-hand side in the last equation equals
=x""xX'+y y+7z -7+ -y -2 -2 -2y =7 - (X +y)] 7 - X +Y)]
Thus, [z — (X' +y)] - [z — (X' +y')] =0, that is, 2’ = (X' +y’).
Similarly, let x € R? and ¢ € R. Write z = cx. We need to show that z’ = cx’. Now,
0=[z—cx]-[z—cx] = *x-x—2cx-2+2-2 = X X —2cX -2/ +7 -7 = [z — x| [7 —cxX] =0

proving z’ = ¢x'. O

Proof of Theorem 5.

Part I. Assume f is an ifo. Then f preserves length and dot product (by Theorem 3). Thus,
in particular, f preserves the unit length of the standard basis vectors e;, ¢ = 1,...,d, so
the diagonal elements in the matrix A’A are all 1. Similarly, for i # j, the zero dot product
e; - e; is preserved, so the rest of the matrix A'A is all zero. Thus, A'A = 1.

Part II. Assume A is orthogonal. We will show that f preserves dot product (and hence it’s
an ifo). Indeed, let x,y € R?. Using the matrix-multiplication form x-y = x'y (we indicate
matrix multiplication by dropping the dot product symbol ), we get

fx) - fly) = Ax- Ay = (Ax)'Ay = (x'"A") Ay = x'(A"A)y =2'ly =x'y =x-y [



Remark.

Elements of SO(d), that is, orthogonal d x d matrices with determinant 1, are called “rota-
tions” in d-space. It is easy to see that for d = 2 they indeed correspond to rotations about
the origin. We show now that for d = 3 they also correspond to rotations in the geometric
sense.

Let A be a 3 x 3 orthogonal matrix with determinant 1. We claim that it correspond to a
linear operator 1" which is a rotation, that is, T" fixes the points of a line through the origin,
and rotates the rest of the 3-space about that line.

Indeed,
det(A—1) = det(A—1)det(A") = det[(A—1)A"] = det(I—A") = det(I—A) = (—1)*det(A—1).
Hence, det(A — I) = 0, that is, 1 is an eigenvalue of A.

Thus, A indeed fixes the points of a line ¢ through the origin. If we choose ¢ to be the third
axis of a new Cartesian coordinate system, the new matrix B of T" will contain the vector
(0,0,1) as its last column, and since B is also orthogonal (Why?), its last row is also (0,0, 1).
The remaining 2 x 2 submatrix is in SO(2) (Why?) and hence a rotation.



