
This discussion is about the space Rd (vectors and matrices have real entries), but most
readily generalizes to finite dimensional vector spaces (and matrices) over arbitrary fields F .

1. A function T : Rd → R
d is linear if it satisfies the following two conditions: T is additive

and T is homogeneous.

The first condition is that T is a homomorphism from Rd to Rd (here the word homomorphism
only expresses that the structure of Rd as an additive group is preserved):

(∀x,y ∈ Rd)T (x + y) = T (x) + T (y) (additivity).

The second condition is

(∀x ∈ Rd) (∀c ∈ R)T (cx) = cT (x) (homogeneity).

Sometimes we combine these two conditions into one:

(∀x,y ∈ Rd)(∀c1, c2 ∈ R)T (c1x + c2y) = c1T (x) + c2T (y)

— the function T preserves linear combinations.

This combined property may also be phrased as “T is a homomorphism,” but this time the
word homomorphism expresses the stronger demand that the structure of Rd as a vector
space be preserved (both vector addition and scalar multiplication are preserved). A linear
function on Rd is also called a linear transformation on Rd or a linear operator on Rd.

2. The unit vectors e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, 0, 0, . . . , 1) form a
basis in Rd: every vector can be expressed in a unique way as a linear combination of the
unit vectors — indeed, (x1, x2, . . . , xd) = x1e

1 + x2e
2 + . . .+ xde

d.

Hence, if a linear operator (on Rd) is zero on all unit vectors, then it’s zero everywhere.
Consequently, if two linear operators agree on all unit vectors, then they agree everywhere.

3. Given a linear operator T on Rd, we construct a d × d matrix A whose jth column
contains T (ej) (j = 1, 2, . . . , d). (When an ordered basis B = (b1, . . . ,bd) other than the
standard basis is used, one should phrase it as “the jth column contains the coordinates of
the image T (bj) of the jth basis vector – expressed in B itself.) Thus, by the rules of matrix
multiplication, T (ej) = Aej, (j = 1, 2, . . . , d), and hence T (x) = Ax for all vectors x ∈ Rd.
This matrix A is the “coordinatized form” of the operator T (in the standard basis).

Examples I: identity on R2 ↔ I =

[
1 0
0 1

]
↔ I(x, y) = (x, y)

T1: rotation of R2 around 0 by π/2 ↔ A1 =

[
0 −1
1 0

]
↔ T1(x, y) = (−y, x)

T2: reflection about y = x ↔ A2 =

[
0 1
1 0

]
↔ T2(x, y) = (y, x)

T3: orthogonal projection onto the x-axis ↔ A3 =

[
1 0
0 0

]
↔ T3(x, y) = (x, 0)

The fourth operator is not an isometry, but the first three are; they satisfy the orthogonality
condition (see next page): A−1 = At, that is, AAt = AtA = I. The first two are direct
isometries (determinant = 1), and the third one is an inverse isometry (determinant = −1).
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Orthogonal matrices

Definition. A d× d matrix A is orthogonal if the length of every column vector is 1, and
any two column vectors have dot product 0.

A more elegant form: The columns of A form an orthonormal basis of the vector space Rd.
Writing At for the transpose of A, the orthogonality condition can be written as AtA = I.

Theorem 1. A matrix A is orthogonal if and only if A−1 = At, that is, the three conditions
AtA = I, AAt = I, and A−1 = At are equivalent.
The determinant of an orthogonal matrix is 1 or -1.

Proof. It is enough to show that A is invertible, since then multiplying by A−1 (from left
and from right) leads to the equivalence. Now, invertibility of an orthogonal matrix A (as
well as det(A) = ±1) follows from the following simple lemmas of linear algebra.

Lemma. The identity I satisfies det(I) = 1.
For any square matrix A, det(At) = det(A).

Lemma. Determinant is multiplicative: For any two d× d matrices A and B,

det(A ·B) = det(A) · det(B).

In other words, determinant is a homomorphism from the set of all d× d matrices to the set
of real numbers (both considered only as multiplicative structures).

Lemma. A square matrix is invertible if and only if its determinant is not 0.

Theorem 2. The product of two orthogonal matrices is orthogonal.

Proof.
(AB)−1 = B−1A−1 = BtAt = (AB)t.

Remark. Note the important rule we used: When either inverting or transposing a product,
one must reverse order!
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Isometries and linear algebra

We will use the (somewhat ridiculous) abbreviation ifo for an isometry fixing the origin.

Short summary

The Following Are Equivalent

• f is an ifo.

• f preserves dot products.

• f is linear with an orthogonal matrix.

Detailed statements

Theorem 3. A function f : Rd → R
d is an ifo if and only if it preserves the dot product

(and hence the lengths) of vectors:

(∀x,y ∈ Rd) f(x) · f(y) = x · y

Theorem 4. An ifo is linear.

Theorem 5. If f is linear with matrix A, then f is an ifo if and only if A is orthogonal
(A−1 = At).

Note that so far everything was about arbitrary dimensions and isometries (direct or inverse).

Theorem 6. Let f : R3 → R
3 be an ifo. Then, f is a direct isometry (the determinant of

the matrix of f is 1) if and only if f is a rotation.

Definition. The set of all d× d orthogonal matrices is denoted by O(d). It is a group with
respect to matrix multiplication, called the orthogonal group.

The set of all matrices in O(d) with determinant 1 clearly form a subgroup. It is denoted by
SO(d) and is called the special orthogonal group.

Because of the equivalences above, we often use O(d) [SO(d)] to also denote the set of all
[direct] isometries of Rd fixing the origin.

Thus, Theorem 6 can be restated as follows:

Theorem 7. Let A be a 3 × 3 real matrix. Then, A ∈ SO(3) if and only if the function
f : R3 → R

3 : x 7→ Ax is a rotation (about some axis through the origin).

Using Theorem 2, we obtain the following non-trivial corollary.

Corollary 8. The product of two rotations fixing the origin is again a rotation.

(“Product,” of course, means composition here.)

3



Proofs

To simplify notation, we will write a′ for f(a), x′ for f(x), etc.

Proof of Theorem 3. Let f be an ifo on Rd. Since the origin is fixed by f , the length of
every vector is also preserved (since length is distance from the origin).
Now let x, y ∈ Rd, and write x′ = f(x) and y′ = f(y). Since

‖x− y‖2 = (x− y) · (x− y) = x · x + y · y − 2x · y = ‖x‖2 + ‖y‖2 − 2x · y,
‖x′ − y′‖2 = (x′ − y′) · (x′ − y′) = x′ · x′ + y′ · y′ − 2x′ · y′ = ‖x′‖2 + ‖y′‖2 − 2x′ · y′,

and ‖x− y‖2 = ‖x′ − y′‖2, ‖x‖2 = ‖x′‖2, ‖y‖2 = ‖y′‖2, so x · y = x′ · y′.

Conversely, if f preserves dot product, then, in particular, it preserves length, and thus it
fixes the origin (the only vector of zero length). Also, for any x,y ∈ Rd,

d(x,y) = ‖x− y‖2 = x · x + y · y − 2x · y,

so distance is also preserved. Thus, f is an ifo.

Proof of Theorem 4. (We’ll use the same ‘prime’ notations as in the previous proof.)
First, let x,y ∈ Rd and let z = x + y. We need to show that z′ = x′ + y′. Now,

0 = [z− (x + y)] · [z− (x + y)] = x · x + y · y + z · z + 2x · y − 2x · z− 2y · z.

Since f preserves dot products (Theorem 3), the right-hand side in the last equation equals

= x′ · x′ + y′ · y′ + z′ · z′ + 2x′ · y′ − 2x′ · z′ − 2y′ · z′ = [z′ − (x′ + y′)] · [z′ − (x′ + y′)].

Thus, [z′ − (x′ + y′)] · [z′ − (x′ + y′)] = 0, that is, z′ = (x′ + y′).

Similarly, let x ∈ Rd and c ∈ R. Write z = cx. We need to show that z′ = cx′. Now,

0 = [z−cx]·[z−cx] = c2x·x−2cx·z+z·z = c2x′ ·x′−2cx′ ·z′+z′ ·z′ = [z′−cx′]·[z′−cx′] = 0

proving z′ = cx′.

Proof of Theorem 5.

Part I. Assume f is an ifo. Then f preserves length and dot product (by Theorem 3). Thus,
in particular, f preserves the unit length of the standard basis vectors ei, i = 1, . . . , d, so
the diagonal elements in the matrix AtA are all 1. Similarly, for i 6= j, the zero dot product
ei · ej is preserved, so the rest of the matrix AtA is all zero. Thus, AtA = I.

Part II. Assume A is orthogonal. We will show that f preserves dot product (and hence it’s
an ifo). Indeed, let x,y ∈ Rd. Using the matrix-multiplication form x ·y = xty (we indicate
matrix multiplication by dropping the dot product symbol ·), we get

f(x) · f(y) = Ax · Ay = (Ax)tAy = (xtAt)Ay = xt(AtA)y = xtIy = xty = x · y
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Remark.

Elements of SO(d), that is, orthogonal d× d matrices with determinant 1, are called “rota-
tions” in d-space. It is easy to see that for d = 2 they indeed correspond to rotations about
the origin. We show now that for d = 3 they also correspond to rotations in the geometric
sense.

Let A be a 3 × 3 orthogonal matrix with determinant 1. We claim that it correspond to a
linear operator T which is a rotation, that is, T fixes the points of a line through the origin,
and rotates the rest of the 3-space about that line.

Indeed,

det(A−I) = det(A−I) det(At) = det[(A−I)At] = det(I−At) = det(I−A) = (−1)3 det(A−I).

Hence, det(A− I) = 0, that is, 1 is an eigenvalue of A.

Thus, A indeed fixes the points of a line ` through the origin. If we choose ` to be the third
axis of a new Cartesian coordinate system, the new matrix B of T will contain the vector
(0, 0, 1) as its last column, and since B is also orthogonal (Why?), its last row is also (0, 0, 1).
The remaining 2× 2 submatrix is in SO(2) (Why?) and hence a rotation.
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