This discussion is about the space \(\mathbb{R}^d \) (vectors and matrices have real entries), but most readily generalizes to finite dimensional vector spaces (and matrices) over arbitrary fields \(F \).

1. A function \(T : \mathbb{R}^d \rightarrow \mathbb{R}^d \) is **linear** if it satisfies the following two conditions: \(T \) is **additive** and \(T \) is **homogeneous**.

The first condition is that \(T \) is a homomorphism from \(\mathbb{R}^d \) to \(\mathbb{R}^d \) (here the word homomorphism only expresses that the structure of \(\mathbb{R}^d \) *as an additive group* is preserved):

\[
(\forall x, y \in \mathbb{R}^d) \quad T(x + y) = T(x) + T(y) \quad \text{(additivity)}.
\]

The second condition is

\[
(\forall x \in \mathbb{R}^d) (\forall c \in \mathbb{R}) T(cx) = cT(x) \quad \text{(homogeneity)}.
\]

Sometimes we combine these two conditions into one:

\[
(\forall x, y \in \mathbb{R}^d)(\forall c_1, c_2 \in \mathbb{R}) T(c_1x + c_2y) = c_1T(x) + c_2T(y)
\]
— the function \(T \) preserves linear combinations.

This combined property may also be phrased as "\(T \) is a homomorphism," but this time the word homomorphism expresses the stronger demand that the structure of \(\mathbb{R}^d \) *as a vector space* be preserved (both vector addition and scalar multiplication are preserved). A **linear function** on \(\mathbb{R}^d \) is also called a **linear transformation** on \(\mathbb{R}^d \) or a **linear operator** on \(\mathbb{R}^d \).

2. The unit vectors \(e^1 = (1, 0, 0, \ldots, 0) \), \(e^2 = (0, 1, 0, \ldots, 0) \), \ldots, \(e^d = (0, 0, 0, \ldots, 1) \) form a basis in \(\mathbb{R}^d \): every vector can be expressed in a unique way as a linear combination of the unit vectors — indeed, \((x_1, x_2, \ldots, x_d) = x_1e^1 + x_2e^2 + \ldots + x_d e^d \).

Hence, if a linear operator (on \(\mathbb{R}^d \)) is zero on all unit vectors, then it’s zero everywhere. Consequentially, if two linear operators agree on all unit vectors, then they agree everywhere.

3. Given a linear operator \(T \) on \(\mathbb{R}^d \), we construct a \(d \times d \) matrix \(A \) whose \(j \)th column contains \(T(e^j) \) \((j = 1, 2, \ldots, d) \). (When an ordered basis \(B = (b_1, \ldots, b_d) \) other than the standard basis is used, one should phrase it as "the \(j \)th column contains the coordinates of the image \(T(b_j) \) of the \(j \)th basis vector — expressed in \(B \) itself.) Thus, by the rules of matrix multiplication, \(T(e^j) = Ae^j \), \((j = 1, 2, \ldots, d) \), and hence \(T(x) = Ax \) for all vectors \(x \in \mathbb{R}^d \). This matrix \(A \) is the "coordinatized form" of the operator \(T \) (in the standard basis).

Examples

\(I \): identity on \(\mathbb{R}^2 \) \(\leftrightarrow \) \[I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] \(\leftrightarrow \) \(I(x, y) = (x, y) \)

\(T_1 \): rotation of \(\mathbb{R}^2 \) around \(0 \) by \(\pi/2 \) \(\leftrightarrow \) \[A_1 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \] \(\leftrightarrow \) \(T_1(x, y) = (-y, x) \)

\(T_2 \): reflection about \(y = x \) \(\leftrightarrow \) \[A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \] \(\leftrightarrow \) \(T_2(x, y) = (y, x) \)

\(T_3 \): orthogonal projection onto the \(x \)-axis \(\leftrightarrow \) \[A_3 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \] \(\leftrightarrow \) \(T_3(x, y) = (x, 0) \)

The fourth operator is not an isometry, but the first three are; they satisfy the orthogonality condition (see next page): \(A^{-1} = A^t \), that is, \(AA^t = A^tA = I \). The first two are direct isometries (determinant = 1), and the third one is an inverse isometry (determinant = -1).
Orthogonal matrices

Definition. A $d \times d$ matrix A is orthogonal if the length of every column vector is 1, and any two column vectors have dot product 0.

A more elegant form: The columns of A form an orthonormal basis of the vector space \mathbb{R}^d. Writing A^t for the transpose of A, the orthogonality condition can be written as $A^tA = I$.

Theorem 1. A matrix A is orthogonal if and only if $A^{-1} = A^t$, that is, the three conditions $A^tA = I$, $AA^t = I$, and $A^{-1} = A^t$ are equivalent.

The determinant of an orthogonal matrix is 1 or -1.

Proof. It is enough to show that A is invertible, since then multiplying by A^{-1} (from left and from right) leads to the equivalence. Now, invertibility of an orthogonal matrix A (as well as $\det(A) = \pm 1$) follows from the following simple lemmas of linear algebra.

Lemma. The identity I satisfies $\det(I) = 1$.

For any square matrix A, $\det(A^t) = \det(A)$.

Lemma. Determinant is multiplicative: For any two $d \times d$ matrices A and B,

$$\det(A \cdot B) = \det(A) \cdot \det(B).$$

In other words, determinant is a homomorphism from the set of all $d \times d$ matrices to the set of real numbers (both considered only as multiplicative structures).

Lemma. A square matrix is invertible if and only if its determinant is not 0.

Theorem 2. The product of two orthogonal matrices is orthogonal.

Proof.

$$(AB)^{-1} = B^{-1}A^{-1} = B^tA^t = (AB)^t.$$

Remark. Note the important rule we used: When either inverting or transposing a product, one must reverse order!
Isometries and linear algebra

We will use the (somewhat ridiculous) abbreviation \textit{ifo} for an isometry fixing the origin.

\section*{Short summary}

\textbf{The Following Are Equivalent}

\begin{itemize}
\item f is an \textit{ifo}.
\item f preserves dot products.
\item f is linear with an orthogonal matrix.
\end{itemize}

\section*{Detailed statements}

\textbf{Theorem 3.} A function $f : \mathbb{R}^d \to \mathbb{R}^d$ is an \textit{ifo} if and only if it preserves the dot product (and hence the lengths) of vectors:

$$(\forall x, y \in \mathbb{R}^d) \ f(x) \cdot f(y) = x \cdot y$$

\textbf{Theorem 4.} An \textit{ifo} is linear.

\textbf{Theorem 5.} If f is linear with matrix A, then f is an \textit{ifo} if and only if A is orthogonal $(A^{-1} = A^t)$.

Note that so far everything was about arbitrary dimensions and isometries (direct or inverse).

\textbf{Theorem 6.} Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be an \textit{ifo}. Then, f is a direct isometry (the determinant of the matrix of f is 1) if and only if f is a rotation.

\textbf{Definition.} The set of all $d \times d$ orthogonal matrices is denoted by $O(d)$. It is a group with respect to matrix multiplication, called the \textbf{orthogonal group}.

The set of all matrices in $O(d)$ with determinant 1 clearly form a subgroup. It is denoted by $SO(d)$ and is called the \textbf{special orthogonal group}.

Because of the equivalences above, we often use $O(d)$ [$SO(d)$] to also denote the set of all [direct] isometries of \mathbb{R}^d fixing the origin.

Thus, Theorem 6 can be restated as follows:

\textbf{Theorem 7.} Let A be a 3×3 real matrix. Then, $A \in SO(3)$ if and only if the function $f : \mathbb{R}^3 \to \mathbb{R}^3 : x \mapsto Ax$ is a rotation (about some axis through the origin).

Using Theorem 2, we obtain the following non-trivial corollary.

\textbf{Corollary 8.} The product of two rotations fixing the origin is again a rotation.

(“Product,” of course, means composition here.)
Proofs

To simplify notation, we will write \(a' \) for \(f(a) \), \(x' \) for \(f(x) \), etc.

Proof of Theorem 3. Let \(f \) be an ifo on \(\mathbb{R}^d \). Since the origin is fixed by \(f \), the length of every vector is also preserved (since length is distance from the origin).

Now let \(x, y \in \mathbb{R}^d \), and write \(x' = f(x) \) and \(y' = f(y) \). Since

\[
\|x - y\|^2 = (x - y) \cdot (x - y) = x \cdot x + y \cdot y - 2x \cdot y = \|x\|^2 + \|y\|^2 - 2x \cdot y,
\]

\[
\|x' - y'\|^2 = (x' - y') \cdot (x' - y') = x' \cdot x' + y' \cdot y' - 2x' \cdot y' = \|x'\|^2 + \|y'\|^2 - 2x' \cdot y',
\]

and \(\|x - y\|^2 = \|x' - y'\|^2 \), \(\|x\|^2 = \|x'\|^2 \), \(\|y\|^2 = \|y'\|^2 \), so \(x \cdot y = x' \cdot y' \).

Conversely, if \(f \) preserves dot product, then, in particular, it preserves length, and thus it fixes the origin (the only vector of zero length). Also, for any \(x, y \in \mathbb{R}^d \),

\[
d(x, y) = \|x - y\|^2 = x \cdot x + y \cdot y - 2x \cdot y,
\]

so distance is also preserved. Thus, \(f \) is an ifo.

Proof of Theorem 4. (We'll use the same ‘prime’ notations as in the previous proof.) First, let \(x, y \in \mathbb{R}^d \) and let \(z = x + y \). We need to show that \(z' = x' + y' \).

\[
0 = [z - (x + y)] \cdot [z - (x + y)] = x \cdot x + y \cdot y + z \cdot z + 2x \cdot y - 2x \cdot z - 2y \cdot z.
\]

Since \(f \) preserves dot products (Theorem 3), the right-hand side in the last equation equals

\[
= x' \cdot x' + y' \cdot y' + z' \cdot z' + 2x' \cdot y' - 2x' \cdot z' - 2y' \cdot z' = [z' - (x' + y')] \cdot [z' - (x' + y')].
\]

Thus, \([z' - (x' + y')] \cdot [z' - (x' + y')] = 0 \), that is, \(z' = (x' + y') \).

Similarly, let \(x \in \mathbb{R}^d \) and \(c \in \mathbb{R} \). Write \(z = cx \). We need to show that \(z' = cx' \).

\[
0 = [z - cx] \cdot [z - cx] = c^2 x \cdot x - 2cx \cdot z + z \cdot z = c^2 x' \cdot x' - 2cx' \cdot z' + z' \cdot z' = [z' - cx'] \cdot [z' - cx'] = 0
\]

proving \(z' = cx' \).

Proof of Theorem 5.

Part I. Assume \(f \) is an ifo. Then \(f \) preserves length and dot product (by Theorem 3). Thus, in particular, \(f \) preserves the unit length of the standard basis vectors \(e_i \), \(i = 1, \ldots, d \), so the diagonal elements in the matrix \(A^t A \) are all 1. Similarly, for \(i \neq j \), the zero dot product \(e_i \cdot e_j \) is preserved, so the rest of the matrix \(A^t A \) is all zero. Thus, \(A^t A = I \).

Part II. Assume \(A \) is orthogonal. We will show that \(f \) preserves dot product (and hence it’s an ifo). Indeed, let \(x, y \in \mathbb{R}^d \). Using the matrix-multiplication form \(x \cdot y = x^t y \) (we indicate matrix multiplication by dropping the dot product symbol \(\cdot \)), we get

\[
f(x) \cdot f(y) = Ax \cdot Ay = (Ax)^t Ay = (x^t A^t)Ay = x^t(A^t A)y = x^t I y = x^t y = x \cdot y
\]
Remark.

Elements of $SO(d)$, that is, orthogonal $d \times d$ matrices with determinant 1, are called “rotations” in d-space. It is easy to see that for $d = 2$ they indeed correspond to rotations about the origin. We show now that for $d = 3$ they also correspond to rotations in the geometric sense.

Let A be a 3×3 orthogonal matrix with determinant 1. We claim that it correspond to a linear operator T which is a rotation, that is, T fixes the points of a line through the origin, and rotates the rest of the 3-space about that line.

Indeed,

$$\det(A-I) = \det(A-I) \det(A^t) = \det[(A-I)A^t] = \det(I-A^t) = \det(I-A) = (-1)^3 \det(A-I).$$

Hence, $\det(A-I) = 0$, that is, 1 is an eigenvalue of A.

Thus, A indeed fixes the points of a line ℓ through the origin. If we choose ℓ to be the third axis of a new Cartesian coordinate system, the new matrix B of T will contain the vector $(0, 0, 1)$ as its last column, and since B is also orthogonal (Why?), its last row is also $(0, 0, 1)$. The remaining 2×2 submatrix is in $SO(2)$ (Why?) and hence a rotation.
For the matrix A of T in the standard basis we have $AA^* = A^*A = I$ (orthogonal matrix). Hence, T is an orthogonal map: $TT^* = T^*T = I$.
Thus, $\det(A)$ is either $+1$ or -1.

Let $A \in O(n)$. Then,
$$\det(A - I) \det(A^*) = \det(I - A^*) = \det(I - A) = (-1)^n \det(A - I)$$
that is, either $\det(A) = (-1)^n$, or 1 is an eigenvalue of A (A fixes a line).

Similarly,
$$\det(A + I) \det(A^*) = \det(I + A^*) = \det(I + A)$$
that is, either $\det(A) = 1$, or -1 is an eigenvalue of A (A reverses a line).

In summary:

when n is odd:
- if $A \in SO(n)$, then 1 is an eigenvalue of A.
- if $A \not\in SO(n)$, then -1 is an eigenvalue of A.

when n is even:
- if $A \not\in SO(n)$, then both 1 and -1 are eigenvalues of A.

Remark: Since an orthogonal matrix preserves length, it can only have 1 and -1 as its (perhaps multiple) real eigenvalues, but it need not have a complete set of eigenvectors (e.g., a rotation by 20 degrees in \mathbb{R}^2 has no real eigenvalues at all).

In an appropriate orthonormal basis, an orthogonal matrix
splits into blocks of ±1-s and 2×2 rotations.
See http://en.wikipedia.org/wiki/Orthogonal_matrix

For more information see
http://www-history.mcs.st-and.ac.uk/~john/geometry/Lectures/L4.html