$O(n)$ denotes the orthogonal group over \mathbb{R}^n (the multiplicative group of real orthogonal $n \times n$ matrices), and $SO(n)$ (special orthogonal group) the subgroup of $O(n)$ of matrices with determinant 1. An isometry of \mathbb{R}^n is a distance preserving map from \mathbb{R}^n to \mathbb{R}^n.

Theorem. The orthogonal group $O(n)$ is isomorphic to the group of all isometries of \mathbb{R}^n which leave the origin fixed. The special orthogonal group $SO(n)$ is isomorphic to the group of all rotations of \mathbb{R}^n.

The first part of the claim follows from the following step-by-step analysis.

Lemma. Let T be an isometry of \mathbb{R}^n which leaves the origin fixed ($T(0) = 0$). Then,
1. T is a linear map: $(\forall x, y \in \mathbb{R}^n)(\forall c, d \in \mathbb{R})T(cx + dy) = cT(x) + dT(y)$.
2. T preserves angles.
3. T preserves dot products.
4. For the matrix A of T in the standard basis we have $A^*A = AA^* = I$ (orthogonal matrix).
5. $\det(A)$ is either $+1$ or -1.

For the second part of the theorem: Let $A \in O(n)$. Then,

$$\det(A - I) \det(A^*) = \det(I - A^*) = \det(I - A) = (-1)^n \det(A - I)$$

that is, either $\det(A) = (-1)^n$, or 1 is an eigenvalue of A (A fixes a line).

Similarly,

$$\det(A + I) \det(A^*) = \det(I + A^*) = \det(I + A)$$

that is, either $\det(A) = 1$, or -1 is an eigenvalue of A (A reverses a line).

In summary:

when n is odd:
- if $A \in SO(n)$, then 1 is an eigenvalue of A.
- if $A \notin SO(n)$, then -1 is an eigenvalue of A.

when n is even:
- if $A \notin SO(n)$, then both 1 and -1 are eigenvalues of A.

Remark: Since an orthogonal matrix preserves length, it can only have 1 and -1 as its (perhaps multiple) real eigenvalues, but it need not have a complete set of eigenvectors (e.g., a rotation by 20 degrees in \mathbb{R}^2 has no real eigenvalues at all).

For more information see

http://www-history.mcs.st-and.ac.uk/~john/geometry/Lectures/L4.html