
O(n) denotes the orthogonal group over Rn (the multiplicative group of real orthogonal
n× n matrices), and SO(n) (special orthogonal group) the subgroup of O(n) of matrices
with determinant 1. An isometry of Rn is a distance preserving map from Rn to Rn.

Theorem. The orthogonal group O(n) is isomorphic to the group of all isometries of Rn

which leave the origin fixed. The special orthogonal group SO(n) is isomorphic to the group
of all rotations of Rn.

The first part of the claim follows from the following step-by-step analysis.

Lemma. Let T be an isometry of Rn which leaves the origin fixed (T (0) = 0). Then,

1. T is a linear map: (∀x,y ∈ Rn)(∀c, d ∈ R)T (cx + dy) = cT (x) + dT (y).

2. T preserves angles.

3. T preserves dot products.

4. For the matrix A of T in the standard basis we have A∗A = AA∗ = I (orthogonal
matrix).

5. det(A) is either +1 or -1.

For the second part of the theorem: Let A ∈ O(n). Then,

det(A− I) det(A∗) = det(I −A∗) = det(I −A) = (−1)n det(A− I)

that is, either det(A) = (−1)n, or 1 is an eigenvalue of A (A fixes a line).

Similarly,
det(A + I) det(A∗) = det(I + A∗) = det(I + A)

that is, either det(A) = 1, or -1 is an eigenvalue of A (A reverses a line).

In summary:

when n is odd:
if A ∈ SO(n), then 1 is an eigenvalue of A.
if A 6∈ SO(n), then -1 is an eigenvalue of A.

when n is even:
if A 6∈ SO(n), then both 1 and -1 are eigenvalues of A.

Remark: Since an orthogonal matrix preserves length, it can only have 1 and -1 as its
(perhaps multiple) real eigenvalues, but it need not have a complete set of eigenvectors
(e.g., a rotation by 20 degrees in R2 has no real eigenvalues at all).

For more information see

http://www-history.mcs.st-and.ac.uk/∼john/geometry/Lectures/L4.html


