$O(n)$ denotes the orthogonal group over \mathbb{R}^{n} (the multiplicative group of real orthogonal $n \times n$ matrices), and $S O(n)$ (special orthogonal group) the subgroup of $O(n)$ of matrices with determinant 1 . An isometry of \mathbb{R}^{n} is a distance preserving map from \mathbb{R}^{n} to \mathbb{R}^{n}.

Theorem. The orthogonal group $O(n)$ is isomorphic to the group of all isometries of \mathbb{R}^{n} which leave the origin fixed. The special orthogonal group $S O(n)$ is isomorphic to the group of all rotations of \mathbb{R}^{n}.

The first part of the claim follows from the following step-by-step analysis.
Lemma. Let T be an isometry of \mathbb{R}^{n} which leaves the origin fixed $(T(\mathbf{0})=\mathbf{0})$. Then,

1. T is a linear map: $\quad\left(\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}\right)(\forall c, d \in \mathbb{R}) T(c \mathbf{x}+d \mathbf{y})=c T(\mathbf{x})+d T(\mathbf{y})$.
2. T preserves angles.
3. T preserves dot products.
4. For the matrix A of T in the standard basis we have $A^{*} A=A A^{*}=I$ (orthogonal matrix).
5. $\operatorname{det}(A)$ is either +1 or -1 .

For the second part of the theorem: Let $A \in O(n)$. Then,

$$
\operatorname{det}(A-I) \operatorname{det}\left(A^{*}\right)=\operatorname{det}\left(I-A^{*}\right)=\operatorname{det}(I-A)=(-1)^{n} \operatorname{det}(A-I)
$$

that is, either $\operatorname{det}(A)=(-1)^{n}$, or 1 is an eigenvalue of A (A fixes a line).
Similarly,

$$
\operatorname{det}(A+I) \operatorname{det}\left(A^{*}\right)=\operatorname{det}\left(I+A^{*}\right)=\operatorname{det}(I+A)
$$

that is, either $\operatorname{det}(A)=1$, or -1 is an eigenvalue of A (A reverses a line).
In summary:
when n is odd:
if $A \in S O(n)$, then 1 is an eigenvalue of A.
if $A \notin S O(n)$, then -1 is an eigenvalue of A.
when n is even:
if $A \notin S O(n)$, then both 1 and -1 are eigenvalues of A.

Remark: Since an orthogonal matrix preserves length, it can only have 1 and -1 as its (perhaps multiple) real eigenvalues, but it need not have a complete set of eigenvectors (e.g., a rotation by 20 degrees in \mathbb{R}^{2} has no real eigenvalues at all).

For more information see
http://www-history.mcs.st-and.ac.uk/~john/geometry/Lectures/L4.html

