
Notations: we write Z+ = {0, 1, 2, . . .}, N = {1, 2, 3, . . .}, 2N := {2n;n ∈ N} = {2, 4, 6, . . .},
and 2N− 1 := {2n− 1;n ∈ N} = {1, 3, 5, . . .}.

Semigroups

In the following, ◦ : S × S → S is a binary operation on a nonempty set S. We write a ◦ b
instead of the too formal ◦(a, b).

We say that ◦ is associative if (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ S. This is the most
important property, and all our operations below will share that.

Definition. Let ◦ be an associative binary operation on a nonempty set S. Then the pair
(S, ◦) is a called a semigroup. (When the operation ◦ is clear from the context, we often
just say that S is a semigroup.)

Remark. Implicit in the word “binary operation” is the following property - often called
closure: for all a, b ∈ S, a ◦ b ∈ S.

We say that ◦ is commutative if a ◦ b = b ◦ a for all a, b ∈ S. [Warning: our operations are
not assumed to be commutative unless explicitly stated so!]

We say that (S, ◦) has an identity (or “S has an identity” for short) if there is an element
e ∈ S such that e ◦ x = x and x ◦ e = x for all x ∈ S. An identity is also called a neutral
element. It is easy to see that when exists, the identity is unique. [Indeed, if e and e′ are
identities, then e = e ◦ e′ = e′.] A semigroup with identity is sometimes called a monoid.

When a semigroup (S, ◦) has an identity e, we say that an element a ∈ S has an inverse (or
“a is invertible”, or “a is a unit”) if there is a b ∈ S such that a◦b = e and b◦a = e; it is easy
to see that if exists, such an element b is unique; we usually write a−1 for this b and call it the
inverse of a. [Indeed, if b and b′ are two such elements, then b = b ◦ (a ◦ b′) = (b ◦ a) ◦ b′ = b′.]
The set of all invertible elements of S is denoted by S∗.

Examples. (R,+), (Z,+), (Z+,+), (N, ·), (2N − 1, ·), (Zn,+), (Zn, ·), as well as the set
of n × n real matrices with respect to matrix-multiplication are semigroups with identity.
(N,+) and (2N, ·) are semigroups without identity.

Groups

Definition. Let ◦ be an associative binary operation on a nonempty set G. The pair (G, ◦)
is a called a group if G has an identity and each element of G has an inverse. The number
of elements in G is called the order of the group. When ◦ is commutative, we say that the
group (G, ◦) is commutative or Abelian.

Remark. We often use · to denote the group operation and call it multiplication. Then we
may just write ab for a ·b, and sometimes we write 1 to denote the identity. For commutative
groups, we often use + to denote the operation and call it addition, write 0 for the identity,
and (−a) for the inverse of a.



Theorem 1. Let (S, ◦) be a semigroup with identity (a monoid). Then (S∗, ◦) is a group.

Examples. Of the above semigroup examples, the only ones that are groups are (R,+),
(Z,+) and (Zn,+). Here are a few more standard Abelian groups: (Q,+), (C,+), (Q\{0}, ·),
(R \ {0}, ·), (C \ {0}, ·). The set of all k× k non-singular real matrices forms a non-Abelian
group with respect to matrix-multiplication; so does the set of all symmetries of an equilateral
triangle (discussed in class) under composition.

A useful (counter)example: Let S be a set containing at least two elements. Define a binary
operation · on S by (∀x, y ∈ S)x · y = x. How do the group axioms fare for S equipped with
this operation? Firstly, · is clearly associative. Furthermore, the condition |S| ≥ 2 implies
that S has no left-identity (hence no identity), but every element of S is a right-identity.
This example may be useful for discarding some hastily made conjectures about groups. One
could even add an identity e to S and still keep its weirdness.

Subgroups

Definition. Let (G, ◦) be a group. A subset S of G is a subgroup if S itself is a group with
respect to the same operation ◦. We write (S, ◦) ≤ (G, ◦), or simply write S ≤ G when it is
clear what the operation is. S < G means S ≤ G and S 6= G (proper subgroup).

It is easy to see that a nonempty subset of G forms a subgroup with respect to ◦ if and
only if it is closed under ◦ and is closed under taking inverse (in (G, ◦)). The following test
combines these two into one:

Theorem 2 (Closure Test). Let (G, ◦) be a group and let S ⊂ G be nonempty. Then
(S, ◦) is a group if and only if a ◦ b−1 ∈ S for all a, b ∈ S.

Examples: (2Z,+) < (Z,+) < (Q,+) < (R,+) < (C,+) and (Q∗, ·) < (R∗, ·) < (C∗, ·) are
subgroup relations.

Theorem 3 (Z). The only subgroups of (Z,+) are the sets dZ := {dn : n ∈ Z), d = 0, 1, 2, . . .

[Hint for a proof: let I ≤ Z and start with the smallest positive element of I (if any).]

Corollary. Let (G, ·) be a group with identity e, and let a ∈ G be arbitrary. The set
{k ∈ Z : ak = e} is clearly a subgroup of Z, and hence it is of the form dZ for some
nonnegative integer d. When this d is positive, we say that the order of a is d, and we write
o(a) = d. Thus, the order of a is the smallest positive integer d (if any) such that ad = e.

Theorem 4 (Lagrange). Let G be a finite group of order n with identity e. Then, an = e
for all a ∈ G. Hence, the order of any element of G is a divisor of n. More generally, the
order of any subgroup of G divides n.

Remark. One can get an easy proof for commutative groups by using the following lemma.
(For non-commutative groups the standard proofs use the notion of cosets.)

Lemma. Let (G, ◦) be a group and let a ∈ G be arbitrary. The map fa : G→ G : x 7→ a ◦ x
is a bijection.

Proof of Lagrange’s theorem in the commutative case: Let a ∈ G. By the previous lemma,∏
g∈G

g =
∏
g∈G

(ag) = a|G|
∏
g∈G

g

and the claim follows.



Some number theory

We will show now how to obtain the Fundamental Theorem of Arithmetic based purely on
Euclid’s 2300 years old ingenious invention: the Euclidean Algorithm. One advantage of this
approach is that it generalizes to similar algebraic structures, e.g., to the ring of polynomials.

Theorem 5. Given a, b ∈ Z, not both 0, there exists a (unique) positive integer d such that d
is a common divisor of a and b [divides both a and b], and if k is any common divisor of a and
b, then k|d. This number d is called the greatest common divisor of a and b [since it hap-
pens to be the same as the largest one of all common divisors], and it is denoted by gcd(a, b).
The greatest common divisor of two numbers is computed by – and hence its existence is
proved by – the Euclidean Algorithm; see http://en.wikipedia.org/wiki/Euclidean algorithm

Theorem 6 (Integer Division Theorem). For every a ∈ Z and b ∈ N there are q, r ∈ Z
such that a = qb+ r and 0 ≤ r < b.

Theorem 7 (GCD Theorem). Let a and b be non-zero integers. Then there are integers
x and y such that gcd(a, b) = ax+ by. In fact, writing d = gcd(a, b), we have

{ax+ by : x, y ∈ Z} = dZ := {dn : n ∈ Z}.

Remark. The Extended Euclidean Algorithm
— see www.millersv.edu/∼bikenaga/absalg/exteuc/exteucth.html —
computes one such pair (x, y) (as well as gcd(a, b)), yet we give a direct proof below to
Theorem 7 (which would thus also prove Theorem 5).

Proof. Let s be the smallest positive member of the set S := {ax+ by : x, y ∈ Z}. We will
show that s = d. (The claim {ax+ by : x, y ∈ Z} = dZ then easily follows.)
Now, d obviously divides all elements of the set S, hence d|s and thus s ≥ d. We show next
that s|a and s|b, that is, s a common divisor of a and b and thus s ≤ d (d being the greatest
common divisor). Indeed, apply the Integer Division Theorem to a and s to find q and r
such that a = qs+ r and 0 ≤ r < s. Since r = a− qs and s is of the form ax+ by (x, y ∈ Z),
so r is also of this form. But then 0 ≤ r < s implies r = 0 (since s was the smallest positive
number of this form). The proof of s|b is similar.

Corollary. The (Diophantine) equation ax+ by = c has a solution (in integers x, y) if and
only if gcd(a, b) divides c.

In other words, the congruence ax ≡ c (modm) has a solution x if and only if gcd(a,m)
divides c; and in that case there are exactly gcd(a,m) different solutions modulo m.

In particular (setting c = 1 above), a has a multiplicative inverse modulo m if and only if
gcd(a,m) = 1.

Theorem 8. If a divides b · c, and a and b are relatively prime, then a divides c.

Proof. By the GCD Theorem, there are x, y such that 1 = gcd(a, b) = ax + by. Hence
c = acx+ bcy, and since both acx and bcy are divisible by a, so is c.

Corollary. If a prime p divides b · c, then either p divides b or p divides c.

Corollary (The Fundamental Theorem of Arithmetic). Any integer greater than 1
can be factored uniquely as a product of primes.



A simple application

Theorem 9. Let k, n ∈ N. Then k
√
n is either integer or irrational.

Proof. Assume k
√
n is rational, say p/q where p, q ∈ N, and gcd(p, q) = 1 (simplify the

fraction otherwise). We need to show that q = 1.

Now, nqk = pk. Thus q divides pk = p · pk−1, and hence, by Theorem 8, q divides pk−1.
Applying (inductively) this argument k times shows that q divides 1, hence q = 1.

Corollaries of Lagrange’s Theorem

Theorem 10 (Fermat’s Little Theorem). Let p be prime and a ∈ Z such that p 6 |a.
Then,

ap−1 ≡ 1 (mod p).

This theorem is a special case of Euler’s theorem (see below).

Definition. For m ∈ N, we define the Euler (totient) function ϕ(m) as follows: ϕ(m) is the
number of integers between 1 and m that are relatively prime to m:

ϕ(m) := |{k : 1 ≤ k < m, gcd(k,m) = 1}|.

Theorem 11 (Euler’s Theorem). Let m ∈ N, m ≥ 2, and let a be relatively prime to m.
Then,

aϕ(m) ≡ 1 (mod m).

Proof. Indeed, the set S := {k : 1 ≤ k < m, gcd(k,m) = 1} = Z
∗
m (the set of invertible

elements of Zm) forms a group under multiplication modulo m. Hence the claim follows from
Lagrange’s theorem (which we proved in the commutative case).

Remark. It is not hard to find the following explicit formula for ϕ(m): If m = pα1
1 p

α2
2 · · · p

αk
k

where pi are distinct primes, then

ϕ(m) = m
k∏
i=1

(
1− 1

pi

)
.

In particular, if n = pq where p and q are distinct primes, then ϕ(n) = (p− 1)(q− 1). (This
is used in the RSA scheme.)


