Notations: we write ZT = {0,1,2,...}, N={1,2,3,...}, 2N := {2n;n € N} = {2,4,6, ...},
and 2N — 1:={2n— 1;n € N} ={1,3,5,...}.

Semigroups

In the following, o : S x S — S is a binary operation on a nonempty set S. We write a o b
instead of the too formal o(a, b).

We say that o is associative if (a 0b)oc =ao (boc) for all a,b,c € S. This is the most
important property, and all our operations below will share that.

Definition. Let o be an associative binary operation on a nonempty set S. Then the pair
(S,0) is a called a semigroup. (When the operation o is clear from the context, we often
Just say that S is a semigroup.)

Remark. Implicit in the word “binary operation” is the following property - often called
closure: for all a,b € S, aob e S.

We say that o is commutative if aob = boa for all a,b € S. [Warning: our operations are
not assumed to be commutative unless explicitly stated sol]

We say that (5, 0) has an identity (or “S has an identity” for short) if there is an element
e € S such that eox =z and r oe = x for all x € S. An identity is also called a neutral
element. It is easy to see that when exists, the identity is unique. [Indeed, if e and €’ are
identities, then e = eo ¢’ =¢'.] A semigroup with identity is sometimes called a monoid.

When a semigroup (.5, o) has an identity e, we say that an element a € S has an inverse (or
“a is invertible”, or “a is a unit”) if there is a b € S such that aob = e and boa = e; it is easy
to see that if exists, such an element b is unique; we usually write a~! for this b and call it the
inverse of a. [Indeed, if b and b’ are two such elements, then b = bo (aob’) = (boa)olt/ =¥'.]
The set of all invertible elements of S is denoted by S*.

Examples' (R7+)a (Za +)7 (Z+7+)a (Nv ')7 (2N -1, ')7 (Zn7+)a (Z’m ')a as well as the set
of n x n real matrices with respect to matrix-multiplication are semigroups with identity.
(N, +) and (2N, -) are semigroups without identity.

Groups

Definition. Let o be an associative binary operation on a nonempty set G. The pair (G, o)
15 a called a group if G has an identity and each element of G has an inverse. The number
of elements in G s called the order of the group. When o is commutative, we say that the
group (G, o) is commutative or Abelian.

Remark. We often use - to denote the group operation and call it multiplication. Then we
may just write ab for a-b, and sometimes we write 1 to denote the identity. For commutative
groups, we often use + to denote the operation and call it addition, write 0 for the identity,
and (—a) for the inverse of a.



Theorem 1. Let (S,0) be a semigroup with identity (a monoid). Then (S*,0) is a group.

Examples. Of the above semigroup examples, the only ones that are groups are (R, +),
(Z,+) and (Z,,+). Here are a few more standard Abelian groups: (Q, +), (C, +), (Q\{0},),
(R\ {0},-), (C\{0},-). The set of all k x k non-singular real matrices forms a non-Abelian
group with respect to matrix-multiplication; so does the set of all symmetries of an equilateral
triangle (discussed in class) under composition.

A useful (counter)example: Let S be a set containing at least two elements. Define a binary
operation - on S by (Vz,y € S)z-y = x. How do the group axioms fare for S equipped with
this operation? Firstly, - is clearly associative. Furthermore, the condition |S| > 2 implies
that S has no left-identity (hence no identity), but every element of S is a right-identity.
This example may be useful for discarding some hastily made conjectures about groups. One
could even add an identity e to S and still keep its weirdness.

Subgroups

Definition. Let (G, 0) be a group. A subset S of G is a subgroup if S itself is a group with
respect to the same operation o. We write (S,0) < (G, o), or simply write S < G when it is
clear what the operation is. S < G means S < G and S # G (proper subgroup).

It is easy to see that a nonempty subset of G' forms a subgroup with respect to o if and
only if it is closed under o and is closed under taking inverse (in (G,o)). The following test
combines these two into one:

Theorem 2 (Closure Test). Let (G,0) be a group and let S C G be nonempty. Then
(S,0) is a group if and only ifaob™t € S for all a,b € S.

Examples: (2Z,+) < (Z,+) < (Q,+) < (R, 4+) < (C,+) and (Q*, ) < (R*,-) < (C*,-) are
subgroup relations.

Theorem 3 (Z). The only subgroups of (Z,+) are the setsdZ := {dn:n € Z),d =0,1,2,...
[Hint for a proof: let I < Z and start with the smallest positive element of I (if any).]

Corollary. Let (G,-) be a group with identity e, and let a € G be arbitrary. The set
{k € Z : af = e} is clearly a subgroup of Z, and hence it is of the form dZ for some
nonnegative integer d. When this d is positive, we say that the order of a is d, and we write
o(a) = d. Thus, the order of a is the smallest positive integer d (if any) such that a® = e.

Theorem 4 (Lagrange). Let G be a finite group of order n with identity e. Then, a" = e
for all a € G. Hence, the order of any element of G is a divisor of n. More generally, the
order of any subgroup of G divides n.

Remark. One can get an easy proof for commutative groups by using the following lemma.
(For non-commutative groups the standard proofs use the notion of cosets.)

Lemma. Let (G,0) be a group and let a € G be arbitrary. The map f,: G — G :x+— aox
18 a biyjection.
Proof of Lagrange’s theorem in the commutative case: Let a € G. By the previous lemma,
[To=1](ag)=d ]9
geG geG geG

and the claim follows. O



Some number theory

We will show now how to obtain the Fundamental Theorem of Arithmetic based purely on
Euclid’s 2300 years old ingenious invention: the Euclidean Algorithm. One advantage of this
approach is that it generalizes to similar algebraic structures, e.g., to the ring of polynomials.

Theorem 5. Given a,b € Z, not both 0, there exists a (unique) positive integer d such that d
is a common diwisor of a and b [divides both a and b/, and if k is any common divisor of a and
b, then k|d. This number d is called the greatest common divisor of a and b [since it hap-
pens to be the same as the largest one of all common divisors/, and it is denoted by ged(a,b).
The greatest common divisor of two numbers is computed by — and hence its existence is
proved by — the Fuclidean Algorithm; see http://en.wikipedia.org/wiki/Fuclidean_algorithm

Theorem 6 (Integer Division Theorem). For every a € Z and b € N there are q,r € Z
such that a = qgb+r and 0 < r < b.

Theorem 7 (GCD Theorem). Let a and b be non-zero integers. Then there are integers
x and y such that ged(a,b) = ax + by. In fact, writing d = ged(a,b), we have

{ax +by:x,y € Z} = dZ = {dn :n € Z}.

Remark. The Extended Euclidean Algorithm

— see www.millersv.edu/~bikenaga/absalg/exteuc/exteucth.html —

computes one such pair (z,y) (as well as ged(a,b)), yet we give a direct proof below to
Theorem 7 (which would thus also prove Theorem 5).

Proof. Let s be the smallest positive member of the set S := {ax + by : z,y € Z}. We will
show that s = d. (The claim {az + by : z,y € Z} = dZ then easily follows.)

Now, d obviously divides all elements of the set S, hence d|s and thus s > d. We show next
that s|a and s|b, that is, s a common divisor of a and b and thus s < d (d being the greatest
common divisor). Indeed, apply the Integer Division Theorem to a and s to find ¢ and r
such that a = gs+r and 0 < r < s. Since r = a — ¢s and s is of the form az + by (z,y € Z),
so r is also of this form. But then 0 < r < s implies r = 0 (since s was the smallest positive
number of this form). The proof of s|b is similar. O

Corollary. The (Diophantine) equation ax + by = ¢ has a solution (in integers x,y) if and
only if ged(a,b) divides c.

In other words, the congruence ax = ¢ (modm) has a solution x if and only if ged(a, m)
divides c; and in that case there are exactly ged(a, m) different solutions modulo m.

In particular (setting ¢ = 1 above), a has a multiplicative inverse modulo m if and only if
gcd(a,m) = 1.

Theorem 8. If a divides b- ¢, and a and b are relatively prime, then a divides c.

Proof. By the GCD Theorem, there are z,y such that 1 = gcd(a,b) = ax + by. Hence
¢ = acx + bey, and since both acx and bey are divisible by a, so is c. m

Corollary. If a prime p divides b - ¢, then either p divides b or p divides c.

Corollary (The Fundamental Theorem of Arithmetic). Any integer greater than 1
can be factored uniquely as a product of primes.



A simple application

Theorem 9. Let k,n € N. Then ¥/n is either integer or irrational.

Proof. Assume {/n is rational, say p/q where p,q € N, and ged(p,q) = 1 (simplify the
fraction otherwise). We need to show that ¢ = 1.

Now, ng® = p*. Thus ¢ divides p* = p - p*~!, and hence, by Theorem 8, ¢ divides p*~1.
Applying (inductively) this argument k times shows that ¢ divides 1, hence ¢ = 1. O

Corollaries of Lagrange’s Theorem

Theorem 10 (Fermat’s Little Theorem). Let p be prime and a € 7Z such that p /a.
Then,
a’ ' =1 (mod p).

This theorem is a special case of Euler’s theorem (see below).

Definition. For m € N, we define the Euler (totient) function p(m) as follows: p(m) is the
number of integers between 1 and m that are relatively prime to m:

e(m) = [{k:1<k<m, ged(k,m) = 1}|.

Theorem 11 (Euler’s Theorem). Let m € N, m > 2, and let a be relatively prime to m.
Then,
a?™ =1 (mod m).

Proof. Indeed, the set S :={k:1 <k <m, ged(k,m) = 1} = 7Z, (the set of invertible
elements of Z,,) forms a group under multiplication modulo m. Hence the claim follows from
Lagrange’s theorem (which we proved in the commutative case). m

Remark. It is not hard to find the following explicit formula for ¢(m): If m = p{'p5? - - - p*
where p; are distinct primes, then

i)

In particular, if n = pg where p and ¢ are distinct primes, then ¢(n) = (p —1)(¢ —1). (This
is used in the RSA scheme.)



