Linear transformations

Throughout this note, V', W, and Z are vector spaces over the same field F'.

Definition. A linear transformation from V to W is a functionT : V — W that preserves
linear combinations:

T(c1aq + caan) = 1T (1) + 2T () for all aj,as €V and ¢y, ¢y € F.

We usually perform two separate tests:
T should preserve vector-addition: T'(a + 3) = T'(«) + T(3) for all o, 3 € V', and
T should preserve scalar multiplication: T'(c-«) =c¢-T(«) for alla € V and ¢ € F.

Theorem 1 (Preservation of subspaces). Let T : V. — W be linear, and let A be a
subspace of V.. Then T(A) := {T'(x) : x € A} is a subspace of W.

Let B be a subspace of W. Then T (B) :={x € V : T(x) € B} is a subspace of V.
Definition. The range of T' is the set R(T) = Range(T) = Im(T) ={T(z) : x € V}. The
rank of T is the dimension of the range of T. The null space (or kernel) of T is the set
N(T) = Null(T) = Ker(T) = {z € V : T(z) = 0}. The nullity of T' is the dimension of
N(T). (In view of the theorem above, the range R(T) = T (V') is a subspace of W and the
null space N(T) = T~1({0}) is a subspace of V, so they have dimensions.)

Here are some easy but important facts. For every linear transformation 7': V' — W,

e 7(0) = 0 (note the two different 0-vectors: one is in V, one in W).

e Spanning sets of V' (e.g., bases of V') are mapped into spanning sets of R(T').
Hence rank(7) < dim(V').  (Clearly, rank(7") < dim(W) also holds.)

e In general, for any subspace U of V', spanning sets of U are mapped into spanning
sets of T(U). Hence dim(7(U)) < dim(U): “linear transformations cannot increase
dimensions!”

e 7" can be defined arbitrarily on a basis of /', and then it is uniquely deter-
mined on the whole domain V. Consequently, if 7" and 7" are linear transformations
from V to W, and they agree on a basis of V', then they agree everywhere on V.

o If f:V —Wand g: W — Z are linear transformations, their composition go f :
V — Z, defined as (g o f)(a) = g(f(a)) (e € V), is also a linear transformation.

The Fundamental Theorem of Linear Algebra

Theorem 2 (FTLA). Let T be a linear transformation from V to W. Then V has a basis
that can be written as AU B, where A and B are disjoint, A is a basis for the null space
N(T), and T'(B) is a basis for the range R(T). Hence, if V' is finite-dimensional, then

rank(7") + nullity(7) = dim(V).

Theorem 3 (FTLA — matrix form). Let M be an m x n matriz over the field F'. The
row space of M is orthogonal to the null space of M (of course), and their dimensions add
up to n. The row space and the column space have the same dimension (the rank of M ).



Invertible linear transformations
Throughout this page, T" is a linear transformation from V' to W.

Definition. A function f :V — W is invertible if there exists a function g : W — V such
that go f = Iy and fog=Iy. (Iy is the identity transformation on V.)

It is easy to see that f is invertible if and only if it is one-to-one and onto (bijection). It is
also easy to see that when such g exists, it is unique. We usually write f~! for this unique
inverse g. When f is an invertible linear transformation, then so is f~! (from W to V).

Definition. The linear transformation T : V' — W is non-singular if Null(T) = {0}.
(That is, nullity (7') = 0, or o # 0 implies T'(«) # 0, or T'(«) = 0 implies o = 0.)

Theorem 4. Let T : V — W be a linear transformation.
The Following Are Equivalent

e T is non-singular.

T is one-to-one.

T maps linearly independent vectors into linearly independent vectors.

For every finite-dimensional subspace U of V', dim(T(U)) = dim(U).

Theorem 5. Let T : V. — W be a linear transformation, and assume that V has a basis.
The Following Are Equivalent

e T is one-to-one.

e 1" maps every basis into linearly independent vectors.

e V has a basis which T maps into linearly independent vectors.

Theorem 6. If dim(V) < oo, then T is one-to-one if and only if rank(7) = dim(V).
If dim(W) < oo, then T is onto if and only if rank(T) = dim(W').

Corollary. Let V and W be finite-dimensional, and assume dim(V') = dim (V).
The Following Are Equivalent

T is one-to-one.

T is onto.

e 1" is tnvertible.
e T maps some basis of V into a basis of W.
e T maps every basis of V into a basis of W.

Both assumptions in the corollary are important. Without them, the equivalences may be
false even in the case V=W (T is a linear operator on V'), as the following example shows:
Example: Let V =W = FY = F(N, F), the space of all F-sequences. Let LS and RS be
the left-shift and right-shift operators on V:

LS(xy,29,...) = (x9,23,...), and RS(x1,zq,x3,...) = (0,21, 29,...).

Clearly, LS is onto but not one-to-one, while RS is one-to-one but not onto.



