
Linear transformations

Throughout this note, V , W , and Z are vector spaces over the same field F .

Definition. A linear transformation from V to W is a function T : V → W that preserves
linear combinations:

T (c1α1 + c2α2) = c1T (α1) + c2T (α2) for all α1, α2 ∈ V and c1, c2 ∈ F.

We usually perform two separate tests:
T should preserve vector-addition: T (α + β) = T (α) + T (β) for all α, β ∈ V , and
T should preserve scalar multiplication: T (c · α) = c · T (α) for all α ∈ V and c ∈ F .

Theorem 1 (Preservation of subspaces). Let T : V → W be linear, and let A be a
subspace of V . Then T (A) := {T (x) : x ∈ A} is a subspace of W .
Let B be a subspace of W . Then T−1(B) := {x ∈ V : T (x) ∈ B} is a subspace of V .

Definition. The range of T is the set R(T ) = Range(T ) = Im(T ) = {T (x) : x ∈ V }. The
rank of T is the dimension of the range of T . The null space (or kernel) of T is the set
N(T ) = Null(T ) = Ker(T ) = {x ∈ V : T (x) = 0}. The nullity of T is the dimension of
N(T ). (In view of the theorem above, the range R(T ) = T (V ) is a subspace of W and the
null space N(T ) = T−1({0}) is a subspace of V , so they have dimensions.)

Here are some easy but important facts. For every linear transformation T : V → W ,

• T (0) = 0 (note the two different 0-vectors: one is in V , one in W ).

• Spanning sets of V (e.g., bases of V ) are mapped into spanning sets of R(T ).
Hence rank(T ) ≤ dim(V ). (Clearly, rank(T ) ≤ dim(W ) also holds.)

• In general, for any subspace U of V , spanning sets of U are mapped into spanning
sets of T (U). Hence dim(T (U)) ≤ dim(U): “linear transformations cannot increase
dimensions!”

• T can be defined arbitrarily on a basis of V , and then it is uniquely deter-
mined on the whole domain V . Consequently, if T and T ′ are linear transformations
from V to W , and they agree on a basis of V , then they agree everywhere on V .

• If f : V → W and g : W → Z are linear transformations, their composition g ◦ f :
V → Z, defined as (g ◦ f)(α) = g(f(α)) (α ∈ V ), is also a linear transformation.

The Fundamental Theorem of Linear Algebra

Theorem 2 (FTLA). Let T be a linear transformation from V to W . Then V has a basis
that can be written as A ∪ B, where A and B are disjoint, A is a basis for the null space
N(T ), and T (B) is a basis for the range R(T ). Hence, if V is finite-dimensional, then

rank(T ) + nullity(T ) = dim(V ).

Theorem 3 (FTLA – matrix form). Let M be an m × n matrix over the field F . The
row space of M is orthogonal to the null space of M (of course), and their dimensions add
up to n. The row space and the column space have the same dimension (the rank of M).



Invertible linear transformations
Throughout this page, T is a linear transformation from V to W .

Definition. A function f : V → W is invertible if there exists a function g : W → V such
that g ◦ f = IV and f ◦ g = IW . (IV is the identity transformation on V .)

It is easy to see that f is invertible if and only if it is one-to-one and onto (bijection). It is
also easy to see that when such g exists, it is unique. We usually write f−1 for this unique
inverse g. When f is an invertible linear transformation, then so is f−1 (from W to V ).

Definition. The linear transformation T : V → W is non-singular if Null(T ) = {0}.
(That is, nullity(T ) = 0, or α 6= 0 implies T (α) 6= 0, or T (α) = 0 implies α = 0.)

Theorem 4. Let T : V → W be a linear transformation.

The Following Are Equivalent

• T is non-singular.

• T is one-to-one.

• T maps linearly independent vectors into linearly independent vectors.

• For every finite-dimensional subspace U of V , dim(T (U)) = dim(U).

Theorem 5. Let T : V → W be a linear transformation, and assume that V has a basis.

The Following Are Equivalent

• T is one-to-one.

• T maps every basis into linearly independent vectors.

• V has a basis which T maps into linearly independent vectors.

Theorem 6. If dim(V ) <∞, then T is one-to-one if and only if rank(T ) = dim(V ).
If dim(W ) <∞, then T is onto if and only if rank(T ) = dim(W ).

Corollary. Let V and W be finite-dimensional, and assume dim(V ) = dim(W ).

The Following Are Equivalent

• T is one-to-one.

• T is onto.

• T is invertible.

• T maps some basis of V into a basis of W .

• T maps every basis of V into a basis of W .

Both assumptions in the corollary are important. Without them, the equivalences may be
false even in the case V = W (T is a linear operator on V ), as the following example shows:
Example: Let V = W = FN = F(N, F ), the space of all F -sequences. Let LS and RS be
the left-shift and right-shift operators on V :

LS(x1, x2, . . .) = (x2, x3, . . .), and RS(x1, x2, x3, . . .) = (0, x1, x2, . . .).

Clearly, LS is onto but not one-to-one, while RS is one-to-one but not onto.


