Linear transformations

Throughout this note, V, W, and Z are vector spaces over the same field F.

Definition. A linear transformation from V to W is a function $T: V \rightarrow W$ that preserves linear combinations:

$$
T\left(c_{1} \alpha_{1}+c_{2} \alpha_{2}\right)=c_{1} T\left(\alpha_{1}\right)+c_{2} T\left(\alpha_{2}\right) \quad \text { for all } \quad \alpha_{1}, \alpha_{2} \in V \quad \text { and } \quad c_{1}, c_{2} \in F
$$

We usually perform two separate tests:
T should preserve vector-addition: $T(\alpha+\beta)=T(\alpha)+T(\beta)$ for all $\alpha, \beta \in V$, and
T should preserve scalar multiplication: $T(c \cdot \alpha)=c \cdot T(\alpha)$ for all $\alpha \in V$ and $c \in F$.
Theorem 1 (Preservation of subspaces). Let $T: V \rightarrow W$ be linear, and let A be a subspace of V. Then $T(A):=\{T(x): x \in A\}$ is a subspace of W.
Let B be a subspace of W. Then $T^{-1}(B):=\{x \in V: T(x) \in B\}$ is a subspace of V.
Definition. The range of T is the set $R(T)=\operatorname{Range}(T)=\operatorname{Im}(T)=\{T(x): x \in V\}$. The rank of T is the dimension of the range of T. The null space (or kernel) of T is the set $N(T)=\operatorname{Null}(T)=\operatorname{Ker}(T)=\{x \in V: T(x)=0\}$. The nullity of T is the dimension of $N(T)$. (In view of the theorem above, the range $R(T)=T(V)$ is a subspace of W and the null space $N(T)=T^{-1}(\{\mathbf{0}\})$ is a subspace of V, so they have dimensions.)
Here are some easy but important facts. For every linear transformation $T: V \rightarrow W$,

- $T(\mathbf{0})=\mathbf{0}$ (note the two different 0 -vectors: one is in V, one in W).
- Spanning sets of V (e.g., bases of V) are mapped into spanning sets of $R(T)$. Hence $\operatorname{rank}(T) \leq \operatorname{dim}(V) . \quad$ (Clearly, $\operatorname{rank}(T) \leq \operatorname{dim}(W)$ also holds.)
- In general, for any subspace U of V, spanning sets of U are mapped into spanning sets of $T(U)$. Hence $\operatorname{dim}(T(U)) \leq \operatorname{dim}(U)$: "linear transformations cannot increase dimensions!"
- T can be defined arbitrarily on a basis of V, and then it is uniquely determined on the whole domain V. Consequently, if T and T^{\prime} are linear transformations from V to W, and they agree on a basis of V, then they agree everywhere on V.
- If $f: V \rightarrow W$ and $g: W \rightarrow Z$ are linear transformations, their composition $g \circ f:$ $V \rightarrow Z$, defined as $(g \circ f)(\alpha)=g(f(\alpha))(\alpha \in V)$, is also a linear transformation.

The Fundamental Theorem of Linear Algebra

Theorem 2 (FTLA). Let T be a linear transformation from V to W. Then V has a basis that can be written as $A \cup B$, where A and B are disjoint, A is a basis for the null space $N(T)$, and $T(B)$ is a basis for the range $R(T)$. Hence, if V is finite-dimensional, then

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(V)
$$

Theorem 3 (FTLA - matrix form). Let M be an $m \times n$ matrix over the field F. The row space of M is orthogonal to the null space of M (of course), and their dimensions add up to n. The row space and the column space have the same dimension (the rank of M).

Invertible linear transformations

Throughout this page, T is a linear transformation from V to W.
Definition. A function $f: V \rightarrow W$ is invertible if there exists a function $g: W \rightarrow V$ such that $g \circ f=I_{V}$ and $f \circ g=I_{W} . \quad\left(I_{V}\right.$ is the identity transformation on V.)
It is easy to see that f is invertible if and only if it is one-to-one and onto (bijection). It is also easy to see that when such g exists, it is unique. We usually write f^{-1} for this unique inverse g. When f is an invertible linear transformation, then so is f^{-1} (from W to V).
Definition. The linear transformation $T: V \rightarrow W$ is non-singular if $\operatorname{Null}(T)=\{\mathbf{0}\}$. (That is, $\operatorname{nullity}(T)=0$, or $\alpha \neq \mathbf{0}$ implies $T(\alpha) \neq \mathbf{0}$, or $T(\alpha)=\mathbf{0}$ implies $\alpha=\mathbf{0}$.)

Theorem 4. Let $T: V \rightarrow W$ be a linear transformation.
The Following Are Equivalent

- T is non-singular.
- T is one-to-one.
- T maps linearly independent vectors into linearly independent vectors.
- For every finite-dimensional subspace U of $V, \operatorname{dim}(T(U))=\operatorname{dim}(U)$.

Theorem 5. Let $T: V \rightarrow W$ be a linear transformation, and assume that V has a basis.

The Following Are Equivalent

- T is one-to-one.
- T maps every basis into linearly independent vectors.
- V has a basis which T maps into linearly independent vectors.

Theorem 6. If $\operatorname{dim}(V)<\infty$, then T is one-to-one if and only if $\operatorname{rank}(T)=\operatorname{dim}(V)$. If $\operatorname{dim}(W)<\infty$, then T is onto if and only if $\operatorname{rank}(T)=\operatorname{dim}(W)$.

Corollary. Let V and W be finite-dimensional, and assume $\operatorname{dim}(V)=\operatorname{dim}(W)$.
The Following Are Equivalent

- T is one-to-one.
- T is onto.
- T is invertible.
- T maps some basis of V into a basis of W.
- T maps every basis of V into a basis of W.

Both assumptions in the corollary are important. Without them, the equivalences may be false even in the case $V=W$ (T is a linear operator on V), as the following example shows: Example: Let $V=W=F^{\mathbb{N}}=\mathcal{F}(\mathbb{N}, F)$, the space of all F-sequences. Let LS and RS be the left-shift and right-shift operators on V :

$$
L S\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right), \text { and } R S\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right) .
$$

Clearly, LS is onto but not one-to-one, while RS is one-to-one but not onto.

