Isomorphism of groups

Informally speaking: two groups are isomorphic if they have the exact same structures; only the names of the group elements (and perhaps of the operations) are different.

Definition. Two groups (G, \circ) and (H, *) are **isomorphic** if there is a bijection $f : G \to H$ such that

$$f(x \circ y) = f(x) * f(y)$$
 for all $x, y \in G$.

Such a bijection f is sometimes called an isomorphism between G and H.

In other words, if the images of some $a, b, c \in G$ are $a', b', c' \in H$ and $c = a \circ b$, then we must have c' = a' * b'. We sometimes express this as "f respects the given group operations".

While this definition seems to be one-sided – so we should say G is isomorphic to H –, it is easy to see that given such a bijection $f: G \to H$, the bijection $f^{-1}: H \to G$ also satisfies a similar property, and so being isomorphic is a symmetric relation. It is equally obvious that this relation is also transitive and reflexive, so group isomorphism is an equivalence relation.

Let f be an isomorphism between (G, \circ) and (H, *). The following properties are easily seen (we write e_G and e_H for the respective identities in the groups):

•
$$f(e_G) = e_H$$

• $f(a^{-1}) = (f(a))^{-1}$ for all $a \in G$.

Examples. Let $G = \{e, a\}$ with operation $e \circ e = e$, $e \circ a = a \circ e = a$, $a \circ a = e$, and let $H = \{c, d\}$ with operation $c \circ c = c$, $c \circ d = d \circ c = d$, $d \circ d = c$. Clearly, these two groups are isomorphic; we simply renamed e to c and a to d.

But they are also isomorphic to the following two groups:

Let $U = \{1, -1\}$ with operation $1 \cdot 1 = 1$, $1 \cdot (-1) = (-1) \cdot 1 = -1$, $(-1) \cdot (-1) = 1$. Let $\mathbb{Z}_2 = \{0, 1\}$ with operation 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.

Here is a simple bijection between the last two groups which respects the operations:

$$f:\mathbb{Z}_2\to U:x\mapsto (-1)^x$$

Homework: Find a simple (and familiar) isomorphism between the groups (\mathbb{R}^+, \cdot) and $(\mathbb{R}, +)$ (the former being the set of all positive reals under multiplication).

It is easy to see that any cyclic group is Abelian and is isomorphic to one of the following: $(\mathbb{Z}, +)$, or $(\mathbb{Z}_n, +)$ for some non-negative integer n.

It is also easy to see (using Lagrange's theorem) that if the order n of a group is prime, then the group is cyclic and hence isomorphic to $(\mathbb{Z}_n, +)$.