Isometries in \mathbb{R}^n

Definitions. The space $\mathbb{R}^n := \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}\}$ is equipped with the usual **inner product**, **metric**, and (Euclidean) **distance**: if $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ are two points in \mathbb{R}^n , then the inner product (or dot product) is defined as $\mathbf{x} \cdot \mathbf{y} := \sum_i x_i y_i$, the length as $\|\mathbf{x}\| := \sqrt{\sum_i x_i^2}$, and the distance as $d(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\| = \sqrt{\sum_i (x_i - y_i)^2}$.

A **hyperplane** in \mathbb{R}^n is an (n-1)-dimensional plane with equation $\mathbf{v} \cdot \mathbf{x} = c$. A hyperplane is usually specified by one of its points $\mathbf{p} = (p_1, \dots, p_n)$ and a nonzero vector $\mathbf{v} = (v_1, \dots, v_n)$ - called a normal vector of the hyperplane - as the set of points $\mathbf{x} = (x_1, \dots, x_n)$ satisfying $(\mathbf{x} - \mathbf{p})\mathbf{v} = 0$, that is, the set $\{(x_1, \dots, x_n) : \sum_i (x_i - p_i)v_i = 0\}$.

If **P** and **Q** are two distinct points in \mathbb{R}^n , then the set $\{\mathbf{x} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{P}) = d(\mathbf{x}, \mathbf{Q})\}$ is a hyperplane, called the *perpendicular bisector* of the segment \mathbf{PQ} .

Given a hyperplane H and a point \mathbf{P} not on H, there's a unique point \mathbf{P}' such that H is the perpendicular bisector of \mathbf{PP}' ; the map that assigns to each point \mathbf{P} this corresponding \mathbf{P}' if $\mathbf{P} \notin H$ and assigns \mathbf{P} to itself if $\mathbf{P} \in H$ is called the **reflection** about H (or on H).

We say that n+1 points in \mathbb{R}^n are **in general position** if there is no hyperplane which contains all of them. Thus, two points in \mathbb{R}^1 are in general position if they are different, three points in \mathbb{R}^2 are in general position if they are not collinear, and four points in \mathbb{R}^3 are in general position if they are not coplanar.

An **isometry** in \mathbb{R}^n is a map $f:\mathbb{R}^n\to\mathbb{R}^n$ which preserves distances, that is, for which

$$d(f(\mathbf{x}), f(\mathbf{y})) = d(\mathbf{x}, \mathbf{y})$$
 for all points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Clearly, the *composition* of isometries is an isometry; in fact, the isometries of \mathbb{R}^n form a (non-Abelian) group with respect to composition.

Lemma. An isometry of \mathbb{R}^n is a bijection from \mathbb{R}^n to \mathbb{R}^n .

(It is obvious that an isometry is one-to-one, but it is harder to see that it is also onto. The latter follows from the theorem at the bottom of the page since reflections are bijections.)

Lemma. Let the points $\mathbf{B}_1, \ldots, \mathbf{B}_{n+1}$ be in general position in \mathbb{R}^n , and let f be an isometry on \mathbb{R}^n . Then the images $f(\mathbf{B}_1), \ldots, f(\mathbf{B}_{n+1})$ are also in general position.

Given a function $f: \mathbb{R}^n \to \mathbb{R}^n$, we say that a point **x** is a **fixed point** for f (or "f fixes the point **x**") if $f(\mathbf{x}) = \mathbf{x}$.

Theorem (Global Positioning). Let the points $\mathbf{B}_1, \ldots, \mathbf{B}_{n+1}$ be in general position in \mathbb{R}^n . Then, the distances from these \mathbf{B}_i -s uniquely determine any point, that is, if \mathbf{P} and \mathbf{Q} are two points of \mathbb{R}^n such that $d(\mathbf{P}, \mathbf{B}_i) = d(\mathbf{Q}, \mathbf{B}_i)$ for $i = 1, 2, \ldots, n+1$, then $\mathbf{P} = \mathbf{Q}$.

Corollary. In particular, if f is an isometry that fixes some n+1 points which are in general position, then f fixes all points of \mathbb{R}^n , that is, f is the identity map.

Corollary. Let f and g be two isometries of \mathbb{R}^n , and let the points $\mathbf{B}_1, \ldots, \mathbf{B}_{n+1}$ be in general position. If f and g agree on all of $\mathbf{B}_1, \ldots, \mathbf{B}_{n+1}$, then f = g everywhere.

The following important theorem can be proved by (backward) induction on the number of fixed points an isometry has.

Theorem. Every isometry of \mathbb{R}^n can be obtained as the composition of at most n+1 reflections.