Images and Inverse Images

Let A and B be non-empty sets, and let $f: A \to B$ be a function from A to B. Recall that A is called the **domain** of f and B is the **codomain** of f (no, it's not the range!).

For $X \subseteq A$ and $Y \subseteq B$, we define the **image** of X (under f) as

$$f(X) := \{ f(x) : x \in X \} = \{ y \in B : \exists x \in X \text{ such that } f(x) = y \},$$

and the **inverse image** of Y (under f) as

$$f^{-1}(Y) := \{ x \in A \colon f(x) \in Y \}.$$

Remarks. Images (under f) are sometimes called "direct images." Note that f^{-1} here does not denote a function; the argument of f^{-1} is not an element of B but a subset of B!

An important example is the image of the whole domain A, called the **range** of f:

$$Range(f) := f(A) = \{f(x) : x \in A\} = \{y \in B : \exists x \in A \text{ such that } f(x) = y\}.$$

The following identities are easy consequences of the definition: let U and V be arbitrary subsets of B. Then,

(a)
$$f^{-1}(B) = A$$
 and $f^{-1}(\emptyset) = \emptyset$,

(b)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
,

(c)
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
,

(d)
$$f^{-1}(U \setminus V) = f^{-1}(U) \setminus f^{-1}(V)$$
,

(e)
$$f^{-1}(\overline{U}) = \overline{f^{-1}(U)}$$
.

[Overline stands for "complement":
$$\overline{U} := B \setminus U$$
, and $\overline{f^{-1}(U)} := A \setminus f^{-1}(U)$.]

Hence, in general, for any Boolean expression φ , $f^{-1}(\varphi(U, V, \ldots)) = \varphi(f^{-1}(U), f^{-1}(V), \ldots)$.

Note: While (b) also holds with f replacing f^{-1} [in which case, of course, U and V would be subsets of A], (c), (d) and (e) **do not!** In short: inverse images - unlike direct images - are easy to work with; they satisfy most natural identities.

More differences between inverse and direct images

Let $f: \mathbb{R} \to \mathbb{R}$ be a real function. Then, f is continuous if and only if f^{-1} maps open sets to open sets. (In general topological spaces, this is the definition of continuity.)

BUT: a continuous function doesn't necessarily map open sets to open sets.