Images and Inverse Images

Let A and B be non-empty sets, and let $f: A \rightarrow B$ be a function from A to B. Recall that A is called the domain of f and B is the codomain of f (no, it's not the range!).

For $X \subseteq A$ and $Y \subseteq B$, we define the image of X (under f) as

$$
f(X):=\{f(x): x \in X\}=\{y \in B: \exists x \in X \text { such that } f(x)=y\}
$$

and the inverse image of Y (under f) as

$$
f^{-1}(Y):=\{x \in A: f(x) \in Y\} .
$$

Remarks. Images (under f) are sometimes called "direct images." Note that f^{-1} here does not denote a function; the argument of f^{-1} is not an element of B but a subset of B ! An important example is the image of the whole domain A, called the range of f :

$$
\text { Range }(f):=f(A)=\{f(x): x \in A\}=\{y \in B: \exists x \in A \text { such that } f(x)=y\}
$$

The following identities are easy consequences of the definition: let U and V be arbitrary subsets of B. Then,
(a) $f^{-1}(B)=A \quad$ and $\quad f^{-1}(\emptyset)=\emptyset$,
(b) $f^{-1}(U \cup V)=f^{-1}(U) \cup f^{-1}(V)$,
(c) $f^{-1}(U \cap V)=f^{-1}(U) \cap f^{-1}(V)$,
(d) $f^{-1}(U \backslash V)=f^{-1}(U) \backslash f^{-1}(V)$,
(e) $f^{-1}(\bar{U})=\overline{f^{-1}(U)}$.
[Overline stands for "complement": $\bar{U}:=B \backslash U$, and $\left.\overline{f^{-1}(U)}:=A \backslash f^{-1}(U).\right]$
Hence, in general, for any Boolean expression $\varphi, f^{-1}(\varphi(U, V, \ldots))=\varphi\left(f^{-1}(U), f^{-1}(V), \ldots\right)$.
Note: While (b) also holds with f replacing f^{-1} [in which case, of course, U and V would be subsets of $A]$, (c), (d) and (e) do not! In short: inverse images - unlike direct images are easy to work with; they satisfy most natural identities.

More differences between inverse and direct images

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real function. Then, f is continuous if and only if f^{-1} maps open sets to open sets. (In general topological spaces, this is the definition of continuity.)

BUT: a continuous function doesn't necessarily map open sets to open sets.

