Reminder about groups

On this page, o will denote a general binary operation on a (nonempty) set G.
Recall that a binary operation takes two inputs (in a specific order) from G and produces an output which must also be in G. In other words, the expression "binary operation" will, in this class, automatically include the so-called closure condition:

$$
(\forall g, h \in G) g \circ h \in G .
$$

Definition. Let G be a (nonempty) set, and let \circ be a binary operation on G. We say that (G, \circ) is a group if the following three conditions are satisfied.
(i) (associativity) $(g \circ h) \circ k=g \circ(h \circ k)$ for all $g, h, k \in G$.
(ii) (existence of identity) There is an $e \in G$ such that $e \circ g=g \circ e=g$ for all $g \in G$. [it is easy to see that this e is unique]
(iii) (existence of inverse) For every $g \in G$ there is an $h \in G$ such that $g \circ h=h \circ g=e$.

The number of elements in G (cardinality of G) is called the order of the group: $o(G)=|G|$.
If the group satisfies the additional property $(\forall g, h \in G) g \circ h=h \circ g$, then it is said to be commutative or Abelian.
Remarks. When (G, \circ) is a group, we often say that G is a group under (or with respect to) the operation \circ, or simply say that G is a group.
Typically, a multiplicative notation is used by writing "." for the operation o. In this case we sometimes write 1 for the identity e, and g^{-1} for the inverse of g. We also often drop the symbol • altogether, and simply write $g h$ for $g \cdot h$, and g^{2}, g^{3}, etc, for repeated "multiplications."
With an additive notation $(G,+$) (typically used for Abelian groups), we usually write 0 for the identity, $-g$ for the inverse of g, and $2 g, 3 g$, etc, for repeated "additions."

Here are some essential properties of groups (using the multiplicative notation):
For arbitrary fixed $a, b \in G$, the equations $a x=b$ and $x a=b$ have unique solutions. (The two solutions $x=a^{-1} b$ and $x=b a^{-1}$ may be different!)
Cancellation rules: $a c=b c$ implies $a=b$, and $c a=c b$ implies $a=b$.
Inverse of products: $(a b)^{-1}=b^{-1} a^{-1}$
(or in an "additive group": $-(a+b)=(-b)+(-a)$; not $(-a)+(-b)!$)
Examples. (Using the notations $\mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}, \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}, \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$.)
Here are a few standard Abelian groups:
$(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$, and $\left(\mathbb{Z}_{n},+\right),\left(\mathbb{Q}^{*}, \cdot\right),\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{C}^{*}, \cdot\right)$.
The set of all $k \times k$ non-singular real matrices forms a non-Abelian group with respect to matrix-multiplication.
The set of all symmetries of an equilateral triangle forms a non-Abelian group under composition. So does, in general, the set of all isometries of \mathbb{R}^{d} which map a certain fixed set of points $S \subseteq \mathbb{R}^{d}$ into itself.

Subgroups

Definition. Let (G, \circ) be a group. A subset H of G is a subgroup if H itself is a group with respect to the same operation \circ. We write $(H, \circ) \leq(G, \circ)$, or simply write $H \leq G$ when it is clear what the operation is. $H<G$ means $H \leq G$ and $H \neq G$ (proper subgroup).

Lemma. Let G be a group (with respect to the operation.). Let $e=e_{G}$ denote the identity in G, and let H be a subgroup of G. Then, $e \in H$, that is, $e_{H}=e_{G}$. Also, for every $a \in H$, the inverse a^{-1} (within the group G) is also an element of H, and hence it is the inverse of the element a within the group H also.

Proof. Since H itself is a group, it has an identity $i=e_{H}$. We need to show that $i=e$. Indeed, $i \cdot i=i$ (by the definition of i), and since $i \in G$ also, so $i \cdot e=i$ holds as well (by the definition of e). Using cancellation (within G) in the equality $i \cdot i=i \cdot e$, we get $i=e$.
Notice how we repeatedly used the fact that the two groups have the same operation!
Now let $a \in H$ be given, and let b be the element of H for which $a \cdot b=i$. Since $a \cdot a^{-1}=e$ and $e=i$, we get, by cancellation (in G) again, that $b=a^{-1}$ (and hence $a^{-1} \in H$).

The following test easily follows from the above lemma.
Theorem (Subgroup Test). Let (G, \circ) be a group with identity e, and let H be a subset of G. Then, H is a subgroup with respect to the same operation \circ if and only if H is nonempty, H is closed under \circ, and H is closed under taking inverse (within the group (G, \circ)):
(a) $H \neq \emptyset$,
(b) $(\forall a, b \in H) a \circ b \in H$,
(c) $(\forall a \in H) a^{-1} \in H$.

It is easy to see that condition (a) can be replaced with the alternative condition
(a') $e \in H$.
(Here is an exercise you may want to think about, or may wait until cyclic groups are discussed: Let G be a (multiplicative) group, and let H be a finite nonempty subset of G closed under multiplication. Prove that H is a subgroup of G. In other words, when H is finite, then we need not check that H is also closed under taking inverse, it's automatic.)

The following test provides a more compact form:
Theorem. Let (G, \circ) be a group and let $H \subseteq G$ be nonempty. Then (H, \circ) is a group if and only if $a^{-1} \circ b \in H$ for all $a, b \in H$.

Examples:

$$
(\{0\},+)<(6 \mathbb{Z},+)<(2 \mathbb{Z},+)<(\mathbb{Z},+)<(\mathbb{Q},+)<(\mathbb{R},+)<(\mathbb{C},+)
$$

and

$$
(\{1\}, \cdot)<(\{1,-1\}, \cdot)<\left(\mathbb{Q}^{*}, \cdot\right)<\left(\mathbb{R}^{*}, \cdot\right)<\left(\mathbb{C}^{*}, \cdot\right)
$$

Given $a \in G$, the group $\langle a\rangle:=\left\{a^{k}: k \in \mathbb{Z}\right\}$ is called the cyclic subgroup generated by a. The order of $\langle a\rangle$ is called the order of the element a and is denoted by $o(a)$.

Theorem. The only subgroups of $(\mathbb{Z},+)$ are the sets $d \mathbb{Z}:=\{d n: n \in \mathbb{Z}\}, d=0,1,2, \ldots$
[Hint for a proof: let $I \leq \mathbb{Z}$ and start with the smallest positive element of I (if any).]
Corollary. Let (G, \cdot) be a group with identity e, and let $a \in G$ be arbitrary. The set $\left\{k \in \mathbb{Z}: a^{k}=e\right\}$ is clearly a subgroup of \mathbb{Z}, and hence it is of the form d \mathbb{Z} for some nonnegative integer d. When this d is positive (so it's the smallest positive integer d such that $\left.a^{d}=e\right)$, then it's easily seen to be equal to the order o(a) of a.

Theorem (Lagrange). Let G be a finite group of order n with identity e. Then, $a^{n}=e$ for all $a \in G$. In fact,

$$
\left\{m \in \mathbb{Z}: g^{m}=e\right\}=o(g) \mathbb{Z}:=\{o(g) \ell: \ell \in \mathbb{Z}\}
$$

More generally, if H is a subgroup of G, then $o(H) \mid o(G)$ (| denotes "divides"). Hence, the order of any element of G is a divisor of n. Even more generally, the order of any subgroup of G divides n.

Remark. One can get an easy proof for commutative groups by using the following lemma. (For non-commutative groups, the proof will use the notion of cosets.)

Lemma. Let (G, \circ) be a group and let $a \in G$ be arbitrary. The map $f_{a}: G \rightarrow G: x \mapsto a \circ x$ is a bijection.

Proof of Lagrange's theorem in the commutative case: Let $a \in G$. By the previous lemma,

$$
\prod_{g \in G} g=\prod_{g \in G}(a g)=a^{|G|} \prod_{g \in G} g
$$

and the claim follows.

