Reminder about groups

On this page, o will denote a general binary operation on a (nonempty) set G.

Recall that a binary operation takes two inputs (in a specific order) from G and produces
an output which must also be in G. In other words, the expression “binary operation” will,
in this class, automatically include the so-called closure condition:

(Vg.h € G)goh €G.

Definition. Let G be a (nonempty) set, and let o be a binary operation on G. We say that
(G, 0) is a group if the following three conditions are satisfied.

(i) (associativity) (goh)ok=go(hok) forall g,h,k € G.

ii) (existence of identity ere is an e € G such that eog=goe =g for all g € G.
1 ist f identit There 1 G such that I G
[it is easy to see that this e is unique/

(i1i) (existence of inverse) For every g € G there is an h € G such that goh = hog = e.
The number of elements in G (cardinality of G ) is called the order of the group: o(G) = |G]|.
If the group satisfies the additional property (Vg,h € G)goh = ho g, then it is said to be
commutative or Abelian.

Remarks. When (G, o) is a group, we often say that G is a group under (or with respect
to) the operation o, or simply say that G is a group.

Typically, a multiplicative notation is used by writing “” for the operation o. In this
case we sometimes write 1 for the identity e, and g~! for the inverse of g. We also often
drop the symbol - altogether, and simply write gh for ¢ - h, and ¢2, g3, etc, for repeated
“multiplications.”

With an additive notation (G, +) (typically used for Abelian groups), we usually write 0 for
the identity, —g for the inverse of g, and 2g, 3¢, etc, for repeated “additions.”
Here are some essential properties of groups (using the multiplicative notation):

For arbitrary fixed a,b € G, the equations az = b and xza = b have unique solutions. (The
two solutions x = a™'b and x = ba™! may be different!)

Cancellation rules: ac = bc implies a = b, and ca = ¢b implies a = b.
Inverse of products: (ab)™! =b"1a™!
(or in an “additive group”: —(a + b) = (=b) + (—a); not (—a) + (=b) !)
Examples. (Using the notations Q* = Q \ {0}, R* =R\ {0}, C* = C\ {0}.)
Here are a few standard Abelian groups:
(Z7 +)7 (Q7 +)7 (R> +)7 ((Cv +)7 and (Zm +)7 (@*7 ')7 (R*, ')7 (C*, )
The set of all k£ x k non-singular real matrices forms a non-Abelian group with respect to
matrix-multiplication.

The set of all symmetries of an equilateral triangle forms a non-Abelian group under com-
position. So does, in general, the set of all isometries of R? which map a certain fixed set of
points S C R? into itself.



Subgroups

Definition. Let (G, 0) be a group. A subset H of G is a subgroup if H itself is a group with
respect to the same operation o. We write (H,o) < (G,0), or simply write H < G when it
is clear what the operation is. H < G means H < G and H # G (proper subgroup).

Lemma. Let G be a group (with respect to the operation -). Let e = eq denote the identity
in G, and let H be a subgroup of G. Then, e € H, that is, ey = eq. Also, for every a € H,
the inverse a=' (within the group G) is also an element of H, and hence it is the inverse of
the element a within the group H also.

Proof. Since H itself is a group, it has an identity ¢ = ey. We need to show that ¢ = e.
Indeed, i -7 =i (by the definition of i), and since i € G also, so i - e = ¢ holds as well (by the
definition of e). Using cancellation (within G) in the equality i -i =i - e, we get i = e.
Notice how we repeatedly used the fact that the two groups have the same operation!

Now let a € H be given, and let b be the element of H for which a -b = i. Since a-a™*

=e
and e = i, we get, by cancellation (in () again, that b = a™! (and hence a™! € H). O
The following test easily follows from the above lemma.

Theorem (Subgroup Test). Let (G, o) be a group with identity e, and let H be a subset of
G. Then, H is a subgroup with respect to the same operation o if and only if H is nonempty,
H is closed under o, and H is closed under taking inverse (within the group (G,0)):

(a) HA0,
(b) (YVa,b€ H)aobe H,

(¢c) (Va€ H)a '€ H.

It is easy to see that condition (a) can be replaced with the alternative condition
(') e € H.

(Here is an exercise you may want to think about, or may wait until cyclic groups are
discussed: Let G be a (multiplicative) group, and let H be a finite nonempty subset of G
closed under multiplication. Prove that H is a subgroup of G. In other words, when H is
finite, then we need not check that H is also closed under taking inverse, it’s automatic.)

The following test provides a more compact form:

Theorem. Let (G, 0) be a group and let H C G be nonempty. Then (H, o) is a group if and
only ifatob € H for all a,b € H.

Examples:

({0}, +) < (6Z,+) < (2Z,+) < (Z,+) < (Q,+) < (R, +) < (C,+)

and

({1}7 ) < ({17 _1}’ ) < (@*v ) < (R*v ) < (C*a )



Given a € G, the group <a>:= {a* : k € Z} is called the cyclic subgroup generated by a.
The order of <a> is called the order of the element a and is denoted by o(a).

Theorem. The only subgroups of (Z,+) are the sets dZ = {dn:n € Z}, d=0,1,2,...
[Hint for a proof: let I < Z and start with the smallest positive element of I (if any).]

Corollary. Let (G,-) be a group with identity e, and let a € G be arbitrary. The set
{k € Z : af = e} is clearly a subgroup of Z, and hence it is of the form dZ for some
nonnegative integer d. When this d is positive (so it’s the smallest positive integer d such
that a® = e), then it’s easily seen to be equal to the order o(a) of a.

Theorem (Lagrange). Let G be a finite group of order n with identity e. Then, a™ = e for
all a € G. In fact,
{meZ:g"=e}=o0(9)Z:={o(g9)l:{ € Z}.

More generally, if H is a subgroup of G, then o(H)|o(G) (| denotes “divides”). Hence, the
order of any element of G is a divisor of n. Even more generally, the order of any subgroup

of G divides n.

Remark. One can get an easy proof for commutative groups by using the following lemma.
(For non-commutative groups, the proof will use the notion of cosets.)

Lemma. Let (G,0) be a group and let a € G be arbitrary. The map fo : G — G :x—aox
15 a bijection.

Proof of Lagrange’s theorem in the commutative case: Let a € G. By the previous lemma,

[To=1](ag)=d ] g

geqG geG geG

and the claim follows.



