
Reminder about groups

On this page, ◦ will denote a general binary operation on a (nonempty) set G.

Recall that a binary operation takes two inputs (in a specific order) from G and produces
an output which must also be in G. In other words, the expression “binary operation” will,
in this class, automatically include the so-called closure condition:

(∀g, h ∈ G) g ◦ h ∈ G.
Definition. Let G be a (nonempty) set, and let ◦ be a binary operation on G. We say that
(G, ◦) is a group if the following three conditions are satisfied.

(i) (associativity) (g ◦ h) ◦ k = g ◦ (h ◦ k) for all g, h, k ∈ G.

(ii) (existence of identity) There is an e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.
[it is easy to see that this e is unique]

(iii) (existence of inverse) For every g ∈ G there is an h ∈ G such that g ◦h = h ◦ g = e.

The number of elements in G (cardinality of G) is called the order of the group: o(G) = |G|.

If the group satisfies the additional property (∀g, h ∈ G) g ◦ h = h ◦ g, then it is said to be
commutative or Abelian.

Remarks. When (G, ◦) is a group, we often say that G is a group under (or with respect
to) the operation ◦, or simply say that G is a group.

Typically, a multiplicative notation is used by writing “·” for the operation ◦. In this
case we sometimes write 1 for the identity e, and g−1 for the inverse of g. We also often
drop the symbol · altogether, and simply write gh for g · h, and g2, g3, etc, for repeated
“multiplications.”

With an additive notation (G,+) (typically used for Abelian groups), we usually write 0 for
the identity, −g for the inverse of g, and 2g, 3g, etc, for repeated “additions.”

Here are some essential properties of groups (using the multiplicative notation):

For arbitrary fixed a, b ∈ G, the equations ax = b and xa = b have unique solutions. (The
two solutions x = a−1b and x = ba−1 may be different!)

Cancellation rules: ac = bc implies a = b, and ca = cb implies a = b.

Inverse of products: (ab)−1 = b−1a−1

(or in an “additive group”: −(a+ b) = (−b) + (−a); not (−a) + (−b) !)

Examples. (Using the notations Q∗ = Q \ {0}, R∗ = R \ {0}, C∗ = C \ {0}.)
Here are a few standard Abelian groups:
(Z,+), (Q,+), (R,+), (C,+), and (Zn,+), (Q∗, ·), (R∗, ·), (C∗, ·).
The set of all k × k non-singular real matrices forms a non-Abelian group with respect to
matrix-multiplication.

The set of all symmetries of an equilateral triangle forms a non-Abelian group under com-
position. So does, in general, the set of all isometries of Rd which map a certain fixed set of
points S ⊆ Rd into itself.



Subgroups

Definition. Let (G, ◦) be a group. A subset H of G is a subgroup if H itself is a group with
respect to the same operation ◦. We write (H, ◦) ≤ (G, ◦), or simply write H ≤ G when it
is clear what the operation is. H < G means H ≤ G and H 6= G (proper subgroup).

Lemma. Let G be a group (with respect to the operation ·). Let e = eG denote the identity
in G, and let H be a subgroup of G. Then, e ∈ H, that is, eH = eG. Also, for every a ∈ H,
the inverse a−1 (within the group G) is also an element of H, and hence it is the inverse of
the element a within the group H also.

Proof. Since H itself is a group, it has an identity i = eH . We need to show that i = e.
Indeed, i · i = i (by the definition of i), and since i ∈ G also, so i · e = i holds as well (by the
definition of e). Using cancellation (within G) in the equality i · i = i · e, we get i = e.

Notice how we repeatedly used the fact that the two groups have the same operation!

Now let a ∈ H be given, and let b be the element of H for which a · b = i. Since a · a−1 = e
and e = i, we get, by cancellation (in G) again, that b = a−1 (and hence a−1 ∈ H).

The following test easily follows from the above lemma.

Theorem (Subgroup Test). Let (G, ◦) be a group with identity e, and let H be a subset of
G. Then, H is a subgroup with respect to the same operation ◦ if and only if H is nonempty,
H is closed under ◦, and H is closed under taking inverse (within the group (G, ◦)):

(a) H 6= ∅,
(b) (∀a, b ∈ H) a ◦ b ∈ H,

(c) (∀a ∈ H) a−1 ∈ H.

It is easy to see that condition (a) can be replaced with the alternative condition

(a’) e ∈ H.

(Here is an exercise you may want to think about, or may wait until cyclic groups are
discussed: Let G be a (multiplicative) group, and let H be a finite nonempty subset of G
closed under multiplication. Prove that H is a subgroup of G. In other words, when H is
finite, then we need not check that H is also closed under taking inverse, it’s automatic.)

The following test provides a more compact form:

Theorem. Let (G, ◦) be a group and let H ⊆ G be nonempty. Then (H, ◦) is a group if and
only if a−1 ◦ b ∈ H for all a, b ∈ H.

Examples:

({0},+) < (6Z,+) < (2Z,+) < (Z,+) < (Q,+) < (R,+) < (C,+)

and
({1}, ·) < ({1,−1}, ·) < (Q∗, ·) < (R∗, ·) < (C∗, ·)



Given a ∈ G, the group <a>:= {ak : k ∈ Z} is called the cyclic subgroup generated by a.
The order of <a> is called the order of the element a and is denoted by o(a).

Theorem. The only subgroups of (Z,+) are the sets dZ := {dn : n ∈ Z}, d = 0, 1, 2, . . .

[Hint for a proof: let I ≤ Z and start with the smallest positive element of I (if any).]

Corollary. Let (G, ·) be a group with identity e, and let a ∈ G be arbitrary. The set
{k ∈ Z : ak = e} is clearly a subgroup of Z, and hence it is of the form dZ for some
nonnegative integer d. When this d is positive (so it’s the smallest positive integer d such
that ad = e), then it’s easily seen to be equal to the order o(a) of a.

Theorem (Lagrange). Let G be a finite group of order n with identity e. Then, an = e for
all a ∈ G. In fact,

{m ∈ Z : gm = e} = o(g)Z := {o(g)` : ` ∈ Z}.

More generally, if H is a subgroup of G, then o(H)|o(G) ( | denotes “divides”). Hence, the
order of any element of G is a divisor of n. Even more generally, the order of any subgroup
of G divides n.

Remark. One can get an easy proof for commutative groups by using the following lemma.
(For non-commutative groups, the proof will use the notion of cosets.)

Lemma. Let (G, ◦) be a group and let a ∈ G be arbitrary. The map fa : G→ G : x 7→ a ◦ x
is a bijection.

Proof of Lagrange’s theorem in the commutative case: Let a ∈ G. By the previous lemma,∏
g∈G

g =
∏
g∈G

(ag) = a|G|
∏
g∈G

g

and the claim follows.


