Reminder about groups

On this page, \circ will denote a general binary operation on a (nonempty) set G.

Recall that a binary operation takes two inputs (in a specific order) from G and produces an output which must also be in G. In other words, the expression "binary operation" will, in this class, automatically include the so-called **closure** condition:

$$(\forall g, h \in G) g \circ h \in G.$$

Definition. Let G be a (nonempty) set, and let \circ be a binary operation on G. We say that (G, \circ) is a **group** if the following three conditions are satisfied.

- (i) (associativity) $(g \circ h) \circ k = g \circ (h \circ k)$ for all $g, h, k \in G$.
- (ii) (existence of identity) There is an $e \in G$ such that $e \circ g = g \circ e = g$ for all $g \in G$. [it is easy to see that this e is unique]
- (iii) (existence of inverse) For every $g \in G$ there is an $h \in G$ such that $g \circ h = h \circ g = e$.

The number of elements in G (cardinality of G) is called the **order** of the group: o(G) = |G|.

If the group satisfies the additional property $(\forall g, h \in G) g \circ h = h \circ g$, then it is said to be **commutative** or **Abelian**.

Remarks. When (G, \circ) is a group, we often say that G is a group under (or with respect to) the operation \circ , or simply say that G is a group.

Typically, a multiplicative notation is used by writing "·" for the operation \circ . In this case we sometimes write 1 for the identity e, and g^{-1} for the inverse of g. We also often drop the symbol \cdot altogether, and simply write gh for $g \cdot h$, and g^2 , g^3 , etc, for repeated "multiplications."

With an additive notation (G, +) (typically used for Abelian groups), we usually write 0 for the identity, -g for the inverse of g, and 2g, 3g, etc, for repeated "additions."

Here are some **essential properties** of groups (using the multiplicative notation):

For arbitrary fixed $a, b \in G$, the equations ax = b and xa = b have unique solutions. (The two solutions $x = a^{-1}b$ and $x = ba^{-1}$ may be different!)

Cancellation rules: ac = bc implies a = b, and ca = cb implies a = b.

Inverse of products: $(ab)^{-1} = b^{-1}a^{-1}$

(or in an "additive group":
$$-(a+b) = (-b) + (-a)$$
; not $(-a) + (-b)$!)

Examples. (Using the notations $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$, $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$, $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.)

Here are a few standard Abelian groups:

$$(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), \text{ and } (\mathbb{Z}_n,+), (\mathbb{Q}^*,\cdot), (\mathbb{R}^*,\cdot), (\mathbb{C}^*,\cdot).$$

The set of all $k \times k$ non-singular real matrices forms a non-Abelian group with respect to matrix-multiplication.

The set of all symmetries of an equilateral triangle forms a non-Abelian group under composition. So does, in general, the set of all isometries of \mathbb{R}^d which map a certain fixed set of points $S \subseteq \mathbb{R}^d$ into itself.

Subgroups

Definition. Let (G, \circ) be a group. A subset H of G is a subgroup if H itself is a group with respect to the same operation \circ . We write $(H, \circ) \leq (G, \circ)$, or simply write $H \leq G$ when it is clear what the operation is. H < G means $H \leq G$ and $H \neq G$ (proper subgroup).

Lemma. Let G be a group (with respect to the operation \cdot). Let $e = e_G$ denote the identity in G, and let H be a subgroup of G. Then, $e \in H$, that is, $e_H = e_G$. Also, for every $a \in H$, the inverse a^{-1} (within the group G) is also an element of H, and hence it is the inverse of the element a within the group H also.

Proof. Since H itself is a group, it has an identity $i = e_H$. We need to show that i = e. Indeed, $i \cdot i = i$ (by the definition of i), and since $i \in G$ also, so $i \cdot e = i$ holds as well (by the definition of e). Using cancellation (within G) in the equality $i \cdot i = i \cdot e$, we get i = e.

Notice how we repeatedly used the fact that the two groups have the same operation!

Now let $a \in H$ be given, and let b be the element of H for which $a \cdot b = i$. Since $a \cdot a^{-1} = e$ and e = i, we get, by cancellation (in G) again, that $b = a^{-1}$ (and hence $a^{-1} \in H$).

The following test easily follows from the above lemma.

Theorem (Subgroup Test). Let (G, \circ) be a group with identity e, and let H be a subset of G. Then, H is a subgroup with respect to the same operation \circ if and only if H is nonempty, H is closed under \circ , and H is closed under taking inverse (within the group (G, \circ)):

- (a) $H \neq \emptyset$,
- (b) $(\forall a, b \in H) \ a \circ b \in H$,
- (c) $(\forall a \in H) a^{-1} \in H$.

It is easy to see that condition (a) can be replaced with the alternative condition (a') $e \in H$.

(Here is an exercise you may want to think about, or may wait until cyclic groups are discussed: Let G be a (multiplicative) group, and let H be a *finite* nonempty subset of G closed under multiplication. Prove that H is a subgroup of G. In other words, when H is finite, then we need not check that H is also closed under taking inverse, it's automatic.)

The following test provides a more compact form:

Theorem. Let (G, \circ) be a group and let $H \subseteq G$ be nonempty. Then (H, \circ) is a group if and only if $a^{-1} \circ b \in H$ for all $a, b \in H$.

Examples:

$$(\{0\},+) < (6\mathbb{Z},+) < (2\mathbb{Z},+) < (\mathbb{Z},+) < (\mathbb{Q},+) < (\mathbb{R},+) < (\mathbb{C},+)$$

and

$$(\{1\},\cdot) < (\{1,-1\},\cdot) < (\mathbb{Q}^*,\cdot) < (\mathbb{R}^*,\cdot) < (\mathbb{C}^*,\cdot)$$

Given $a \in G$, the group $\langle a \rangle := \{a^k : k \in \mathbb{Z}\}$ is called the cyclic subgroup generated by a. The order of $\langle a \rangle$ is called the order of the element a and is denoted by o(a).

Theorem. The only subgroups of $(\mathbb{Z}, +)$ are the sets $d\mathbb{Z} := \{dn : n \in \mathbb{Z}\}, d = 0, 1, 2, \dots$

[Hint for a proof: let $I \leq \mathbb{Z}$ and start with the smallest positive element of I (if any).]

Corollary. Let (G,\cdot) be a group with identity e, and let $a \in G$ be arbitrary. The set $\{k \in \mathbb{Z} : a^k = e\}$ is clearly a subgroup of \mathbb{Z} , and hence it is of the form $d\mathbb{Z}$ for some nonnegative integer d. When this d is positive (so it's the smallest positive integer d such that $a^d = e$), then it's easily seen to be equal to the order o(a) of a.

Theorem (Lagrange). Let G be a finite group of order n with identity e. Then, $a^n = e$ for all $a \in G$. In fact,

$$\{m \in \mathbb{Z} : g^m = e\} = o(g)\mathbb{Z} := \{o(g)\ell : \ell \in \mathbb{Z}\}.$$

More generally, if H is a subgroup of G, then o(H)|o(G) (| denotes "divides"). Hence, the order of any element of G is a divisor of n. Even more generally, the order of any subgroup of G divides n.

Remark. One can get an easy proof for commutative groups by using the following lemma. (For non-commutative groups, the proof will use the notion of cosets.)

Lemma. Let (G, \circ) be a group and let $a \in G$ be arbitrary. The map $f_a : G \to G : x \mapsto a \circ x$ is a bijection.

Proof of Lagrange's theorem in the commutative case: Let $a \in G$. By the previous lemma,

$$\prod_{g \in G} g = \prod_{g \in G} (ag) = a^{|G|} \prod_{g \in G} g$$

and the claim follows.