
Polynomials, field extensions, and Euclidean constructions

In the following, F,G,H,K are fields, often assumed to be subfields of a larger field U
(universe); typically U = R or U = C. For the geometric constructions discussed below,
we start with the field F = Q and extend it further and further finitely many times. All
obtained fields will be subfields of C.

Definitions

• We say that a polynomial p(x) = cnx
n+cn−1x

n−1+. . .+c1x+c0, cn 6= 0, is a polynomial
over F [or p is an F -polynomial] if all coefficients ci are in F ; the coefficient cn is called
the leading coefficient; p is monic if cn = 1; the degree of p is n and is denoted by
deg(p). The 0 polynomial is considered to be an F -polynomial with no degree. The
set of all F -polynomials is denoted by F [x].

• Let α ∈ U . We say that α is a root of p if p(α) = 0. We say that α is algebraic over F
[or α is F -algebraic] if there is a nonzero F -polynomial with root α. Note that α might
be in F , but it might not. If α is F -algebraic, then among all nonzero F -polynomials
with root α there is a unique monic polynomial of smallest possible degree; this is
called the minimal polynomial of α over F . The degree of α over F is defined to be
the degree of its minimum polynomial over F and is denoted by degF (α). [Note that
the minimal polynomial cannot be a constant, so the degree of α is at least 1.]

• Let a(x) and b(x) be F -polynomials. We say that b(x) divides a(x) [or a(x) is di-
visible by b(x)] if there exists an F -polynomial q(x) such that a(x) = q(x)b(x). An
F -polynomial p is said to be irreducible over F if the only F -polynomials that divide
p are constants and constant multiples of p itself [analogue of prime numbers]. We
don’t call constants irreducible [just as we don’t call 1 a prime]. Hence, p is reducible
means that there exist F -polynomials a and b both of degree at least 1 such that p = ab.

Theorem 1. Let p be a polynomial over F , and let α ∈ F . Then α is a root of p if and only
if p(x) is divisible by (x− α) (in which case the ratio q will automatically be over F ).
Consequently, a polynomial of degree n can have at most n roots (even with multiplicity).

Theorem 2 (Polynomial Division). Let a, b ∈ F [x], b 6= 0. Then there are (unique) poly-
nomials q, r ∈ F [x] such that a(x) = b(x)q(x) + r(x) and either r is 0 [the zero polynomial]
or deg(r) < deg(b).

Theorem 3. Let α be F -algebraic with minimal polynomial m(x). If f(x) is any F -
polynomial with f(α) = 0, then m divides f , that is, there is a q ∈ F [x] such that f = qm.
Consequently, if a monic polynomial p ∈ F [x] is irreducible over F and p(α) = 0, then p is
the minimal polynomial of α.

[Sketch of proof: divide f by m and substitute α for x.]

Corollary 4. Since a cubic polynomial with rational coefficients but without rational roots
is irreducible over Q, hence all its roots are of degree 3 over Q.



Definition. If F and K are fields and F is a subfield of K, then we write F ≤ K and say
that K is an extension of F . It can then be seen that K is a vector space over F ; the
dimension (finite or infinite) of that vector space is called the degree of the extension and
is denoted by [K : F ]. We say that K is a finite extension of F if the degree [K : F ] is finite.

Definition. Given a field K and a set S ⊆ K, the field generated by S is the smallest
subfield of K containing S, that is, the (unique) field G ≤ K with the following properties:
(1) S ⊆ G, and (2) if H ≤ K is any field containing S then G ≤ H.

Theorem 5. The field G described in the previous definition exists, and it is equal to the
intersection of all subfields of K that contain S.

Definition. Let F ≤ K be fields, and let α ∈ K. We obtain an extension of F by adjoining
α to F : the extension F (α) is defined to be the smallest subfield of K containing F and α.
In general, given a set S ⊆ K, the extension field F (S) is the field generated by F ∪ S.
Clearly [by definition], F ≤ F (S) ≤ K.

It is easy to see that if F is a subfield of K, then for any α ∈ K, the extension field F (α) is

F (α) = {p(α)/q(α) : p(x), q(x) ∈ F [x], q(α) 6= 0}.

The following theorem is harder; it describes the extension field for F -algebraic numbers.

Theorem 6. Let F be a subfield of a field K, and let α ∈ K be F -algebraic with degree d.
Then F (α) is a finite extension of F and the degree of the extension [F (α) : F ] equals d.
The extension field has the explicit form F (α) = {c0 + c1α + . . .+ cd−1α

d−1 : ci ∈ F}.

Theorem 7 (Product Rule). Let F ≤ G ≤ K be fields. If [K : F ] is finite then so are
[K : G] and [G : F ], and

[K : F ] = [K : G] · [G : F ]

Proof. K as a vector space over F was assumed to be finite-dimensional; let B be a basis
there. Hence, by definition, [K : F ] = |B|. Now B is a spanning set (though not necessarily
a basis) in K even if K is considered as a vector space over G (since the “set of scalars”
F ⊆ G); hence [K : G] ≤ |B| = [K : F ] <∞. Also, G as a vector space over F is a subspace
of K as a vector space over F , so its dimension [G : F ] ≤ [K : F ] <∞. It remains to prove
the product formula. Let g1, . . . , g` be a basis of G over F , and let k1, . . . , km be a basis of
K over G. Claim. The set S := {gikj : 1 ≤ i ≤ `, 1 ≤ j ≤ m} is a basis of K over F .
Proof: Step 1: S is spanning [easy]. Step 2: S is independent [easy].

The following theorem is the key to the Main Theorem (Gauss) about constructibility.

Corollary 8 (Divisibility Theorem). Let F ≤ K be fields such that [K : F ] < ∞. Let
α ∈ K be arbitrary. Then α is algebraic over F , and degF (α) divides [K : F ].

Proof. Indeed, the fields F ≤ F (α) ≤ K satisfy the conditions of the Product Rule. Hence,
the Product Rule and Theorem 6 together yield the Divisibility Theorem.



The above discussion leads to various constructibility criteria.

In the course of any specific Euclidean construction, only finitely many numbers are actually
constructed. (We may consider a constructed point on the plane as a pair of real numbers
or, alternatively, as one single complex number.) The field that these numbers generate (the
smallest field which contains all of them) will be called “the field of the construction”. Since
every construction starts with 0 and 1, this field always contains Q as a subfield.

Theorem 9. The order over Q of the field of any geometric construction is finite and is a
power of 2.

This, together with the Divisibility Theorem above imply the following necessary condition.

Corollary 10 (Main Theorem – Gauss). Every constructible number (real or complex)
is algebraic over Q and its degree is a power of 2.

Corollary 11. If a cubic polynomial with rational coefficients has no rational roots, then
(by Corollary 4) its roots are of degree 3 over Q and hence they are not constructible.

Corollary 12. Doubling the cube (constructing 3
√

2) and trisecting a 60◦ angle (constructing
cos 20◦) are both impossible using only straightedge and compass.

Definition. A prime number p is a Fermat prime if it is of the form p = 2k + 1. It is easy
to see that all Fermat primes are of the form 22i + 1. (The only known Fermat primes are:
3,5,17,257, and 65537.)

Theorem 13 (Theorem of Gauss – long version). A regular n-gon is constructible
if and only if n = 2k or n = 2kp1p2 · · · p` for some k and some different Fermat primes
p1, p2, . . . , p`.

For n ∈ N, we define the Euler’s (totient) function ϕ(n) to be the number of integers
between 1 and n that are relatively prime to n: ϕ(n) := |{k : 1 ≤ k < n, gcd(k, n) = 1}|
(where gcd stands for greatest common divisor). ϕ is multiplicative in the following sense:
if gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n). Hence the explicit formula: If n = pα1

1 p
α2
2 · · · p

αk
k

where pi are distinct primes, then ϕ(n) =
∏k

i=1(pαii − p
αi−1
i ) = n

∏k
i=1(1− 1/pi).

Theorem 14 (Theorem of Gauss – short version). A regular n-gon is constructible
(that is, the number α = e2πi/n is constructible) if and only if ϕ(n) is a power of two.

The proof of Theorem 13 is reduced to the following proposition.

Theorem 15. Let p be a prime. Then the polynomial Φp(x) = 1 + x + x2 + . . . + xp−1 is
irreducible over Q, and hence it is the minimal polynomial of e2πi/p over Q.

Proof. The claim easily follows by applying the following so-called Eisenstein criterion to
f(x) = Φp(x+ 1) =

∑
1≤k≤p

(
p
k

)
xk−1:

If for an integer polynomial f there is a prime p such that p divides all coefficients except
the leading one, but p2 does not divide the constant term, then f is irreducible over Q.



Remark. The following lemma is often useful to prove irreducibility over Q of polynomials
with integer coefficients.

Lemma (Gauss Lemma). If an integer polynomial factors over Q, then it already factors
over Z. That is, if a polynomial P (x) ∈ Z[x] can be written as P (x) = F (x)G(x) with
F (x), G(x) ∈ Q[x], then there are f(x), g(x) ∈ Z[x] such that deg(f) = deg(F ), deg(g) =
deg(G), and P (x) = f(x)g(x).

Remark. The polynomial Φp mentioned in Theorem 15 is called a cyclotomic polynomial.
For a general n ∈ N, the cyclotomic polynomial is defined as follows. Let α = e2πi/n. Then,

Φn(x) :=
∏

0<k≤n
gcd(k,n)=1

(x− αk) =
∏

0<k≤n
gcd(k,n)=1

(x− e2πik/n)

The polynomial Φn(x) is monic and of order ϕ(n); it can be shown to have integer coefficients
and to be irreducible over Q. Hence Φn is the minimal polynomial of α = e2πi/n over Q.

Remark. The following decomposition is not hard to show:

xn − 1 =
∏
d|n

Φd(x)

Hence, ∑
d|n

ϕ(d) = n

(but this is also easy to show directly).

Here are a few related websites:

www.math.niu.edu/∼beachy/abstract algebra/study guide/85.html#8501

www.wikipedia.org/wiki/Euler’s phi function

www.wikipedia.org/wiki/Cyclotomic polynomial

mathworld.wolfram.com/CyclotomicPolynomial.html


