Summary about Cyclic Groups

In the following, (G, \cdot) always denotes a group with identity e.
Definition. Given $a \in G$, the set $\langle a\rangle=\left\{a^{k}: k \in \mathbb{Z}\right\}$ of all powers of a is clearly a subgroup of G, and is called the cyclic subgroup generated by a. If $\langle a\rangle=G$, we say that G is a cyclic group. Clearly, $\langle a\rangle$ is Abelian (since $a^{i} a^{j}=a^{i+j}=a^{j} a^{i}$). The size of $\langle a\rangle$ is called the order of a and is denoted by o(a) ($|a|$ in some books).

Theorem. All subgroups of a cyclic group are cyclic. For a positive integer n, there is exactly one cyclic group of order n up to isomorphism, and there's only one infinite cyclic group up to isomorphism. More precisely, any infinite cyclic group is isomorphic to $(\mathbb{Z},+)$, and any cyclic group of order n is isomorphic to $\left(\mathbb{Z}_{n},+\right)$.

Theorem. The only subgroups of $(\mathbb{Z},+)$ are $d \mathbb{Z}:=\{d n: n \in \mathbb{Z}), d=0,1,2, \ldots$
[Hint for a proof: let $I \leq \mathbb{Z}$ and start with the smallest positive element of I (if any).]
Theorem. Let $a \in G$. If a has infinite order, then the elements $a^{k}, k \in \mathbb{Z}$, are all distinct. That is, if there are distinct integers i and j such that $a^{i}=a^{j}$, then a has finite order.

If a has finite order, then $o(a)$ is equal to the least positive integer r for which $a^{r}=e$ (and such integers do exist!); in many books this is the definition of order.
If a has finite order r, then $a^{k}=e$ if and only if $r \mid k$; and $a^{i}=a^{j}$ if and only if $i \equiv j(\bmod r)$. In other words, $\left\{k: a^{k}=e\right\}=r \mathbb{Z}$.

Theorem. Let $a \in G$ have (finite) order r. If k and r are relatively prime, then $\left\langle a^{k}\right\rangle=\langle a\rangle$. In general, if $k \in \mathbb{Z}$ is arbitrary, then $\left\langle a^{k}\right\rangle=\left\langle a^{g c d(k, r)}\right\rangle$.

Corollary. Let $a \in G$ have (finite) order r.
If $\operatorname{gcd}(k, n)=1$ then $o\left(a^{k}\right)=r$.
If k divides r, then the order of a^{k} is r / k.
For a general $k \in \mathbb{Z}$, the order of a^{k} is $r / \operatorname{gcd}(k, r)$.
Example. The order of $1,2,3,4,5$ in $\left(\mathbb{Z}_{10},+\right)$ are $10,5,10,5,2$.
Corollary. If G is a cyclic group of order n, and $d \in \mathbb{N}$, then G has a subgroup of order d if and only if d divides n.

Note that this is not true for arbitrary groups G : the group A_{4} (which has order 12) has no subgroups of order 6 . But the statement is true in arbitrary groups when d a prime-power (this is one of the Sylow theorems).

