
Summary about Cyclic Groups

In the following, (G, ·) always denotes a group with identity e.

Definition. Given a ∈ G, the set 〈a〉 = {ak : k ∈ Z} of all powers of a is clearly a subgroup
of G, and is called the cyclic subgroup generated by a. If 〈a〉 = G, we say that G is a cyclic
group. Clearly, 〈a〉 is Abelian (since aiaj = ai+j = ajai). The size of 〈a〉 is called the order
of a and is denoted by o(a) (|a| in some books).

Theorem. All subgroups of a cyclic group are cyclic. For a positive integer n, there is
exactly one cyclic group of order n up to isomorphism, and there’s only one infinite cyclic
group up to isomorphism. More precisely, any infinite cyclic group is isomorphic to (Z,+),
and any cyclic group of order n is isomorphic to (Zn,+).

Theorem. The only subgroups of (Z,+) are dZ := {dn : n ∈ Z), d = 0, 1, 2, . . .

[Hint for a proof: let I ≤ Z and start with the smallest positive element of I (if any).]

Theorem. Let a ∈ G. If a has infinite order, then the elements ak, k ∈ Z, are all distinct.
That is, if there are distinct integers i and j such that ai = aj, then a has finite order.

If a has finite order, then o(a) is equal to the least positive integer r for which ar = e (and
such integers do exist!); in many books this is the definition of order.

If a has finite order r, then ak = e if and only if r|k; and ai = aj if and only if i ≡ j (mod r).
In other words, {k : ak = e} = rZ.

Theorem. Let a ∈ G have (finite) order r. If k and r are relatively prime, then 〈ak〉 = 〈a〉.
In general, if k ∈ Z is arbitrary, then 〈ak〉 = 〈agcd(k,r)〉.

Corollary. Let a ∈ G have (finite) order r.

If gcd(k, n) = 1 then o(ak) = r.

If k divides r, then the order of ak is r/k.

For a general k ∈ Z, the order of ak is r/gcd(k, r).

Example. The order of 1,2,3,4,5 in (Z10,+) are 10,5,10,5,2.

Corollary. If G is a cyclic group of order n, and d ∈ N, then G has a subgroup of order d
if and only if d divides n.

Note that this is not true for arbitrary groups G: the group A4 (which has order 12) has no
subgroups of order 6. But the statement is true in arbitrary groups when d a prime-power
(this is one of the Sylow theorems).


