The Bernstein-Schröder Theorem

Definitions. Let A and B be arbitrary nonempty sets. We say that A has fewer elements than B, and write $A \preceq B$, if there exists a one-to-one function (injection) $f: A \rightarrow B$ from A to B. We say that A is equinumerous to B, and write $A \sim B$, if there exists a bijection $f: A \rightarrow B$ from A to B.

Since the composition of two injections is an injection and the composition of two bijections is a bijection, both relations \preceq and \sim are transitive; it is also obvious that both are reflexive.
Since the inverse $f^{-1}: B \rightarrow A$ of a bijection $f: A \rightarrow B$ always exists and is a bijection itself, the relation of being equinumerous is also symmetric; hence it's an equivalence relation. Thus, \sim splits the universe of all sets (a very problematic notion, but we choose not to make this more precise now!) into equivalence classes, called cardinalities. So formally speaking: the cardinality of A is defined to be the equivalence class containing the set A.

What about the relation \preceq ? Common sense suggests that it is an order relation.
The following theorem of Felix Bernstein and Ernst Schröder only states that \preceq is a partial order (reflexive, antisymmetric, and transitive). More precisely, it says that the relation \preceq is antisymmetric on cardinalities: if A and B are two sets with $A \preceq B$ and $B \preceq A$, then A and B are equinumerous. That it is actually an order relation (not only a partial order: there are no incomparable sets) cannot be proved without the Axiom of Choice.

Theorem. Let A and B be two sets. If there exist two injections $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijection $h: A \rightarrow B$. (If $A \preceq B$ and $B \preceq A$, then $A \sim B$.)
In fact, there are two partitions $A=A_{1} \uplus A_{2}$ and $B=B_{1} \uplus B_{2}$ such that f is a bijection between A_{1} and B_{1} and g is a bijection between B_{2} and A_{2}, and hence the function

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A_{1} \\ g^{-1}(x) & \text { if } x \in A_{2}\end{cases}
$$

is a bijection between A and B.

For comments on the proof, see the other side of this page.

The proof of the B-S theorem can be found in the LBB (page 58), but it can best be understood by solving Exercise 10:28 (page 59):

Let A be a square and B a disc. Prove that there are disjoint decompositions $A=A_{1} \uplus A_{2}$ and $B=B_{1} \uplus B_{2}$ such that A_{1} is similar to B_{1} and A_{2} is similar to B_{2}.

While this exercise has nothing to do with cardinalities, an application of the detailed form of the Bernstein-Schröder theorem would give a simple formal solution. It is illuminating however - and it could serve as a way to discover the proof for the B-S theorem - to solve this exercise by hand; to start with two dilations: f mapping the square inside the disk and g mapping the disk inside the square, and then to find a function h as above that only uses the original dilation f for some points of the square and the dilation g^{-1} for the rest.
Starting with points near the corners of A, one cannot use g^{-1} since these points are outside the range of g; we must use f there. Similarly, some point near the boundary of B must use g for a bijection. Peeling A and B region by region like two onions, we discover the desired regions $A_{1}, A_{2}, B_{1}, B_{2}$.

The resulting picture (courtesy of Chris Ross, U-alumnus in Spring '02 and Spring '03) can be seen by clicking on the name of Schröder in math.rutgers.edu/~useminar/math.htm The white regions there form A_{1} and B_{1}, clearly similar, and the black regions A_{2} and B_{2} are also similar.

