
Spanning sets, independent sets, bases, dimension

Let V be a vector space over a field F . We will often tacitly assume that V is not trivial,
that is, it contains at least two elements.

Definition 1. Let S ⊆ V . A linear combination of (some) vectors in S is a finite sum∑
cixi where all xi ∈ S and ci ∈ F . We say that such a linear combination is non-trivial

if all the vectors xi are distinct and at least one of the coefficients ci is non-zero. The set of
all linear combinations of vectors in S is called the span of S and denoted by span(S). By
convention, span(∅) = {0}.

Clearly, a linear combination of linear combinations of vectors in S is itself a linear com-
bination of vectors in S. Hence, for any S ⊆ V , span(S) is a subspace of V . This is the
smallest subspace of V containing S. If W = span(S), we say that “S spans [or generates]
the subspace W .” Thus, U ⊆ V is a subspace of V if and only if span(U) = U .

Definition 2. A set S ⊆ V is a spanning set if span(S) = V , that is, if S generates the
whole V (every vector in V is a linear combination of some vectors in S):

(∀v ∈ V )(∃x1, . . . , xn ∈ S)(∃c1, . . . , cn ∈ F ) v =
∑

cixi.

Lemma 1 (Monotonicity). Let S ⊆ S ′ ⊆ V . Then, span(S) ⊆ span(S ′).
In particular, if S is a spanning set and S ′ ⊇ S, then S ′ too is a spanning set.

Lemma 2. Let S be a spanning set, and let the set S ′ be such that span(S ′) ⊇ S. Then
already S ′ is a spanning set.

Informal proof: “Linear combinations of linear combinations are linear combinations.”
Formal proof (using Lemma 1): V = span(S) and S ⊆ span(S ′) imply V ⊆ span(span(S ′)) =
span(S ′). But, clearly, span(S ′) ⊆ V , and hence they are equal.

Definition 3. A vector space is finite-dimensional if it has a finite spanning set of vectors.

Definition 4. A set S ⊆ V is linearly dependent [dependent, for short] if one of the
vectors in S can be expressed with some other vectors in S as their linear combination:

(∃x ∈ S)x ∈ span(S \ {x}).

If S is not linearly dependent, we say it is linearly independent [independent, for short].

It is easy to see that this is equivalent to the usual (less intuitive) definition:

A set S ⊆ V is linearly dependent if 0 is a non-trivial linear combination of some vectors
in S, that is, if there are n ∈ N, n distinct vectors xi ∈ S, and n scalars ci ∈ F such that

(i) not all ci are 0, and (ii)
n∑
i=1

cixi = 0.

Definition 5. A set B ⊆ V is a basis (for V ) if it is linearly independent and spans V .
More generally, given a subspace W of V , we say that a subset B ⊆ W is a basis for W if
B is independent and span(B) = W .

Examples: The empty set ∅ is linearly independent, but {0} is dependent. The empty set ∅
spans (and hence it is a basis for) the subspace {0}.
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The following facts are easy to see.

• If D is dependent and D′ ⊃ D (superset), then D′ is also dependent.

• If I is independent and I ′ ⊂ I (subset), then I ′ is also independent.

The next lemma is a very useful tool. It states a property that distinguishes vector spaces
from more general geometric spaces (called linear and near-linear spaces).

Lemma 3 (Dependence Lemma). Let I be independent, and let x 6∈ I. Then I ∪ {x} is
dependent iff x ∈ span(I).

Here is a unified characterization of spanning sets, independent sets and bases.

• S is a spanning set iff every vector in V can be expressed in at least one way
as a linear combination of some vectors in S.

• I is independent iff every vector in V can be expressed in at most one way
as a linear combination of some vectors in I.

• B is a basis iff every vector in V can be uniquely expressed
as a linear combination of some vectors in B.

Here are two more characterizations of bases. Let B ⊆ V .

• B is a basis iff it is a minimal spanning set (B spans V but no proper subset of B
does).

• B is a basis iff it is a maximal independent set (it is linearly independent but is not
a proper subset of another linearly independent set).

(For two more characterizations of bases in finite-dimensional spaces, see the next page.)

The following property of bases can be used to replace matrix arguments in the discussion
of linear independence and bases.

Theorem 1 (Exchange Property). Let I be a linearly independent set of vectors and let
S be a spanning set of vectors. Then, for every x ∈ I there is a y ∈ S such that y 6∈ I \ {x}
and the set I ′ = (I \ {x}) ∪ {y} is also linearly independent.

Corollary 2 (Fundamental Inequality). If I is an arbitrary independent set and S is an
arbitrary spanning set, then |I| ≤ |S|. (We also consider |I| ≤ |S| valid when S is infinite.)
In particular, any two bases have the same number of elements.
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Theorem 3. Let V be a finite dimensional vector space.

(a) Then V has a basis.

(b) In fact, every independent set (in V ) is contained in a basis [can be expanded to a basis],

(c) and every spanning set contains a basis [can be shrunk to a basis].

Remark. The Axiom of Choice implies that Theorem 3 holds in every vector space, finite-
dimensional or not. In particular, EVERY VECTOR SPACE HAS A BASIS.

(But this may fail without AC, in particular, if AC is not assumed then R as a vector space
over Q may not have a basis.)

Corollary 2 and Theorem 3 make the following definition meaningful.

Definition 6. For a finite-dimensional V , the number of vectors in a basis of V is called the
dimension of V and is denoted by dim(V ). If V is not finite dimensional (called infinite-
dimensional), we write dim(V ) =∞.

Corollary 4. For every independent set I ⊆ V and every spanning set S ⊆ V we have

|I| ≤ dim(V ) ≤ |S| (some ‘quantities’ here may be infinite).

In fact,

dim(V ) = sup{|I| : I ⊆ V, I is independent} = inf{|S| : S ⊆ V, S is spanning V }.

Here are two characterizations of bases in finite dimensional spaces.

Corollary 5. Let V be a vector space of finite dimension n, and let B ⊆ V .

• B is a basis if and only if B is spanning V and |B| = n.

• B is a basis if and only if B is independent and |B| = n.

And finally, an important theorem about dimensions of subspaces:

Theorem 6 (Theorem 1.11 in the book).

Let U and W be two subspaces of a vector space V , and assume that

(a) W is finite dimensional, and

(b) U ⊆ W .

Then U is also finite dimensional, and dim(U) ≤ dim(W ).

If [in addition to (a) and (b)] we also have dim(U) = dim(W ), then U = W .
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Some proofs

Proof of the equivalence of bases and minimal spanning sets.

Part I. Let B be a basis. Then it is a spanning set. We need to prove minimality. It is
enough to prove that for every x ∈ B, the set B \ {x} cannot be spanning. (Why?)
Let x ∈ B. Since B is independent, x 6∈ span(B \ {x}), so B \ {x} is not spanning.

Part II. Let B be a minimal spanning set. We need to show that B is independent.
Indeed, assume that B were dependent: (∃x ∈ B)x ∈ span(B \ {x}). Then, by Lemma 2,
already B \ {x} would be spanning – contradicting the minimality of B. 2

Proof of the equivalence of bases and maximal independent sets.

Part I. Let B be a basis. Then it is independent. We need to prove maximality. It is enough
to show that for every y 6∈ B, the set B ∪ {y} is dependent. (Why?)
Let y 6∈ B. Now, y ∈ span(B), since B is a basis. Hence the set B∪{y} is indeed dependent.

Part II. Let B be a maximal independent set. We need to show that B is a spanning set.
Let x ∈ V . We need x ∈ span(B). If x ∈ B, this is clearly so: x = 1 · x. If x 6∈ B, then, by
the maximality of B, the set B ∪ {x} is dependent, and thus, by the Dependence Lemma
(Lemma 3), x ∈ span(B). 2

Hint for the proof of Theorem 3.

The claim that every independent set can be extended to a basis easily follows from the
Fundamental Inequality and the fact that maximal independent sets are bases.

The claim that every finite spanning set contains a basis is even simpler; it follows from the
fact alone that minimal spanning sets are bases.

But to show that even infinite spanning sets contain bases is more tricky; a natural way is
to build up independent sets within a given spanning set:
Claim: If I ⊆ S, I is independent, S is spanning, and I is maximal in S, then I is a basis
(maximal in V ). Proof. It is easy to see that, S ⊆ span(I), and since span(S) = V , so, by
monotonicity, span(I) = V .
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Two proofs for the Exchange Property

Theorem (Exchange Property). Let I be a linearly independent set of vectors and let S
be a spanning set of vectors. Then, for every x ∈ I there is a y ∈ S such that y 6∈ I \ {x}
and the set (I \ {x}) ∪ {y} is linearly independent.

Proof (indirect): Assume that there is an x ∈ I such that for every y ∈ S either y ∈ I \ {x}
or the set (I \ {x}) ∪ {y} is dependent. Choose such an x, let I− = I \ {x}, and let y ∈ S
be arbitrary.

Since I− is independent but I−∪{y} is dependent, or y ∈ I−, thus y ∈ span(I−) by Lemma 3.
Since y ∈ S was chosen arbitrarily, we obtained S ⊆ span(I−), and since S was a spanning
set hence so is I− (Lemma 2).

But then, in particular, x ∈ span(I−) — contradicting the independence of I.

It is easy to see that the Fundamental Inequality |I| ≤ |S| follows from the Exchange Property.
[Sketch: Assume |S| < ∞. On replacing an element x ∈ I \ S with some y ∈ S \ I, the
obtained new set I ′ = (I \ {x}) ∪ {y} is independent, has the same size as I, and has one
fewer element outside S than I did. Repeating this process yields an independent set J ⊆ S
with |J | = |I|.] 2

Remark: Instead of our Exchange Property, we could use the somewhat more complicated
Replacement Theorem 1.10 on page 45 for proving the Fundamental Inequality.

Here is an alternative “Math 250 proof” for the inequality |I| ≤ |S| using underdetermined
systems of linear equations (Corollary to Theorem 3.8 on page 171).

Claim (contrapositive form): If S and I are finite sets, S is spanning, and |I| > |S|, then I
must be dependent.

Proof. Let S = {α1, . . . , αm} and I = {β1, . . . , βn} (hence m < n).
Since S is spanning, there are scalars cij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, such that

βj =
m∑
i=1

cijαi, j = 1, 2, . . . , n.

To prove that the β-s are dependent, let’s try to find a non-trivial linear combination of them
giving 0: we need x1, . . . , xn not all zero such that

n∑
j=1

xjβj = 0.

Now ∑
1≤j≤n

xjβj =
∑

1≤j≤n

xj
∑

1≤i≤m

cijαi =
∑

1≤i≤m

αi
∑

1≤j≤n

cijxj

so we are done if we can find a non-trivial solution to the system of equations:
n∑
j=1

cijxj = 0, i = 1, . . . ,m.

But this is a homogeneous underdetermined system (m < n), and so it does have a non-trivial
solution. 2
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