Algebra Problems

Many more problems are scattered around in various seminar handouts, - some examples: "Wilson's theorem...", "...the Cauchy equation" either explicitly stated as HW, or just indicated by phrases such as (Why?) or "Hint" or "It is easy to see that..."

In the following problems, G is a nonempty set with an associative binary operation • (a so-called semigroup), that is, $: G \times G \rightarrow G$ satisfies $(\forall a, b, c \in G)(a \cdot b) \cdot c=a \cdot(b \cdot c)$.

As customary, we will often write $a b$ for $a \cdot b$. All quantifiers below refer to the universe G, that is, we simply write $(\forall x)$ and $(\exists x)$ for $(\forall x \in G)$ and $(\exists x \in G)$.

Recall that (G, \cdot) is a group if the following two additional properties hold:
(ii) G contains an identity [for $\cdot]:(\exists e)(\forall g) g e=g=e g$ [two-sided identity],
(iii) every element of G has an inverse: $(\forall g)(\exists h) g h=e=h g$ [two-sided inverse].

Problem 1. Prove that right identity and right inverses are sufficient, that is, If there is an element $e \in G$ such that $(\forall g) g e=g$ and $(\forall g)(\exists h) g h=e$, then (G, \cdot) is a group [that is, conditions (ii) and (iii) hold].
[Hint: Firstly, left multiply $g h=e$ with h to show that a right inverse is a left inverse too. Then, right-multiply $g h=e$ with g to show that e is a left identity too, and hence unique.]

Clearly, all linear equations are solvable in a group: $(\forall a, b)(\exists x) a x=b$ and $(\forall a, b)(\exists y) y a=b$. The following problem states the converse.

Problem 2. Show that if all linear equations are solvable in G then (G, \cdot) is a group:

$$
\text { If (iv) }(\forall a, b)(\exists x) a x=b, \quad \text { and }(v)(\forall a, b)(\exists y) y a=b \text {, then }(G, \cdot) \text { is a group. }
$$

While the one-sided versions of (ii) and (iii) are sufficient to guarantee that G is a group under • , the one-sided condition (iv) alone - without the matching (v) - is not sufficient:

Problem 3. Find a set G with an associative binary operation $: G \times G \rightarrow G$ such that the operation \cdot satisfies (iv) yet (G, \cdot) is not a group.

Problem 4. If in a non-trivial group all elements other than the identity have the same finite order p, then p is prime. [G is non-trivial means $o(G)>1 ; G$ has at least two elements.]

The following corollary is a special case of the theorem in the LBB that a field is a vector space over any of its subfields.

Corollary. If in a non-trivial additive Abelian group G all non-zero elements have the same finite order p, then p is prime and G is a vector space over \mathbb{Z}_{p} with the natural scalar multiplication $k g=\underbrace{g+g+\ldots+g}_{k}$ for $k=0,1, \ldots, p-1$.

