## Reminder about groups

Definition 1. $A$ group is a set $G$ together with a binary operation •: $G \times G \rightarrow G$ on $G$ satisfying the following properties:
(i) (associativity) $(g \cdot h) \cdot k=g \cdot(h \cdot k)$ for all $g, h, k \in G$;
(ii) (existence of an identity) there is an $e \in G$ such that $e \cdot g=g \cdot e=g$ for all $g \in G$ [it is easy to see that this e is unique];
(iii) (existence of inverses) for every $g \in G$ there is an $h \in G$ such that $g \cdot h=h \cdot g=e$.

If the group satisfies the additional property $g \cdot h=h \cdot g$ for all $g, h \in G$, then the group is commutative or Abelian.

We often (somewhat sloppily) say that $G$ is a group rather than $(G, \cdot)$ is a group.
Note that we used the standard notation $g \cdot h$ (or simply $g h$ ) rather than $\cdot(g, h)$.
With the above multiplicative notation we often write 1 for the identity $e$, and $g^{-1}$ for the inverse of $g$. With an additive notation $(G,+)$ (typically used for Abelian groups), we usually write 0 for the identity, and $-g$ for the inverse of $g$.
The most essential properties of groups: For any $a, b \in G$, the equations $a x=b$ and $x a=b$ have unique solutions. (The two solutions $x=a^{-1} b$ and $x=b a^{-1}$ may be different!)
Cancellation rules: $a c=b c$ implies $a=b$, and $c a=c b$ implies $a=b$.
Inverse of products: $(a b)^{-1}=b^{-1} a^{-1}$.

## Some facts about finite groups

The number of elements in $G$ is called the order of the group $(o(G)=|G|)$. Given $g \in G$, the smallest $n \in \mathbb{N}$ such that $g^{n}=e$ is called the order of the element $g$ (written as $o(g)$ ). It is easy to see that if $g$ has order $n$ and $k \in \mathbb{N}$, then $o\left(g^{k}\right)=n / \operatorname{gcd}(k, n)$.

Theorem 1 (Lagrange). For any $g \in G$, the order $o(g)$ divides $o(G)$. Hence $g^{o(G)}=e$. In fact,

$$
\left\{n \in \mathbb{Z}: g^{n}=e\right\}=o(g) \mathbb{Z}:=\{o(g) k: k \in \mathbb{Z}\}
$$

More generally, if $H$ is a subgroup of $G$, then $o(H) \mid o(G)$ (divides).
Theorem 2 (Cauchy). If $p$ is prime and $p \mid o(G)$, then $G$ has an element of order $p$.
Theorem 3 (Sylow). If $p$ is prime and $p^{\alpha} \mid o(G)(\alpha \in \mathbb{N})$, then $G$ has a subgroup of order $p^{\alpha}$.

Definition 2. Let $G_{1}, \ldots, G_{k}$ be subgroups of an Abelian group $G$. We say that $G$ is the direct product of these subgroups if every element $g \in G$ can be written uniquely in the form $g=g_{1} g_{2} \cdots g_{k}$ with $g_{i} \in G_{i}$.

Definition 3. $G$ is called cyclic if it is generated by one element, that is, if $G=\left\{g^{n}: n \in \mathbb{Z}\right\}$ for some $g \in G$.

Theorem 4 (The Fundamental Theorem of Finite Abelian Groups). Every finite (or finitely generated) Abelian group is a direct product of cyclic groups.

## Reminder about fields

Definition 4. A field is a set $F$ with two commutative binary operations + and. (addition and multiplication) such that
(i) $F$ is a group under +
(ii) $F^{*}:=F \backslash\{0\}$ is a group under $\cdot$
(iii) • distributes over + , that is, $a \cdot(b+c)=a \cdot b+a \cdot c$ for all $a, b, c \in F$.
(Recall properties A1-A4, M1-M4 and D in Math 311.)
Note: (ii) implies $|F| \geq 2$ since a group (by virtue of the existence of identity) is non-empty.
We usually write 0 and 1 for the additive and the multiplicative identities (as we did in the definition), $-a$ for the additive inverse of $a$, and $a^{-1}$ for the multiplicative inverse of $a$.

Standard examples: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
Example of a finite field: $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}=G F(p)$ where $p$ is prime: "integers modulo $p$." ( $G F$ stands for Galois field after the creator of modern algebra, Evariste Galois 1811-32.)

## Some facts about fields

The smallest subfield contained in a field $F$ ("prime subfield of $F$ ") is either $Z_{p}$ for some prime $p$ (we say " $F$ has characteristic $p$ ") or $\mathbb{Q}$ (" $F$ has characteristic 0 ").

The order (number of elements) of any finite field is a prime-power, and for each prime-power $p^{\alpha}$ there is a unique (up to isomorphism) field $G F\left(p^{\alpha}\right)$ of that order.

The multiplicative group $F^{*}$ of a finite field $F$ is cyclic. In fact, a finite multiplicative subgroup of any field is cyclic.
$G F\left(p^{\alpha}\right)$ has characteristic $p$, and all non-zero elements in $G F\left(p^{\alpha}\right)$ have additive order $p$. Hence $G F\left(p^{\alpha}\right)$ is a vector space over $G F(p)$. (See HW below.)

Recommended homework: If in a non-trivial additive Abelian group $G$ all non-zero elements happen to have the same order $p$, then $p$ is prime (try directly w/o Cauchy's or Sylow's theorem). Furthermore, $G$ is a vector space over $\mathbb{Z}_{p}$ with the natural scalar multiplication $k g=\underbrace{g+g+\ldots+g}_{k}$ for $k=0,1, \ldots, p-1$.
(Non-trivial means $o(G)>1$.)

