Wilson's theorem

Theorem 1. Let p be prime. Then $(p-1)!\equiv-1(\bmod p)$.
Remark. John Wilson found the theorem without proof. Lagrange proved it in 1771 (together with the trivial converse: if n divides $(n-1)!+1$ then n is prime).
Proof. The product of all elements in a finite Abelian group equals the product of all elements of order 2. (Why?) Now in \mathbb{Z}_{p} (p prime), the only element of order 2 is -1 , that is, the only solutions to $x^{2}-1=0$ are 1 and -1 .

The last sentence in the proof was easy to see, since $x^{2}-1=0$ in \mathbb{Z}_{p} means that p divides $x^{2}-1=(x-1)(x+1)$, hence p must divide either $(x-1)$ or $(x+1)$. Alternatively, we could argue that 1 and -1 are obviously solutions to $x^{2}-1=0$, and a quadratic equation cannot have more than two solutions. Is this a valid argument in \mathbb{Z}_{p} ? Would it be valid in Z_{m} ? The following theorem is from the handout polynomials and field extensions.

Theorem 2. In a field, an algebraic equation of degree $n(\geq 1)$ can have at most n solutions (a polynomial of degree n can have at most n roots even with multiplicity).

How about roots of polynomials in \mathbb{Z}_{m} for a composite m ? (Note: \mathbb{Z}_{m} is not a field.)
Example: Let $a, b>1$, and let $m=a b>4$. Then the quadratic equation $x(x-a-b)=0$ has at least three solutions in $\mathbb{Z}_{m}: x=0, a+b, a, b$. (Why three? Isn't this four?)

HW: Prove that in an Abelian group, the set of all elements of order ≤ 2 form a subgroup. (Can you generalize it?) [Hint: Use the standard (multiplicative) subgroup tests: 1. the set is closed under multiplication; 2. the set is closed under inverse.]

HW: In a finite group, the first subgroup test alone is enough, that is: If (G, \cdot) is a finite group and H is a non-empty subset of G closed under multiplication, then H is a subgroup.

Fermat's "little theorem"

Theorem 3. Let p be prime and $\operatorname{gcd}(a, p)=1$. Then $a^{p-1} \equiv 1(\bmod p)$.
In general, let $m>1$ and let $\varphi(m)$ denote the number of positive integers less than m which are coprime to m (Euler function). If $g c d(a, m)=1$, then $a^{\varphi(m)} \equiv 1(\bmod m)$.

Remark. The first statement (for prime p) was found by Fermat but proved by Euler, who generalized it to arbitrary moduli m.

Proof. The theorem is a simple consequence of the following lemma, and the fact that Z_{m}^{*} is an Abelian group, where Z_{m}^{*} is Z_{m} restricted to all its invertible elements.

Lemma 4. If G is an Abelian group of order n and identity e, then $a^{n}=e$ for all $a \in G$.
Proof. Let $a \in G$ be arbitrary. The map $f: G \rightarrow G: g \rightarrow a g$ is clearly a bijection, and hence,

$$
\prod_{g \in G} g=\prod_{g \in G}(a g)=a^{|G|} \prod_{g \in G} g
$$

Remark. The conclusion of the Lemma is true for finite non-Abelian groups also (this is Lagrange's theorem), as stated in the handout groups and fields, but for the proof of this general theorem one needs the notion of cosets.

