
Wilson’s theorem

Theorem 1. Let p be prime. Then (p− 1)! ≡ −1 (mod p).

Remark. John Wilson found the theorem without proof. Lagrange proved it in 1771
(together with the trivial converse: if n divides (n− 1)! + 1 then n is prime).

Proof. The product of all elements in a finite Abelian group equals the product of all
elements of order 2. (Why?) Now in Zp (p prime), the only element of order 2 is -1, that is,
the only solutions to x2 − 1 = 0 are 1 and -1. 2

The last sentence in the proof was easy to see, since x2 − 1 = 0 in Zp means that p divides
x2 − 1 = (x − 1)(x + 1), hence p must divide either (x − 1) or (x + 1). Alternatively, we
could argue that 1 and -1 are obviously solutions to x2 − 1 = 0, and a quadratic equation
cannot have more than two solutions. Is this a valid argument in Zp? Would it be valid in
Zm? The following theorem is from the handout polynomials and field extensions.

Theorem 2. In a field, an algebraic equation of degree n(≥ 1) can have at most n solutions
(a polynomial of degree n can have at most n roots even with multiplicity).

How about roots of polynomials in Zm for a composite m? (Note: Zm is not a field.)

Example: Let a, b > 1, and let m = ab > 4. Then the quadratic equation x(x − a − b) = 0
has at least three solutions in Zm: x = 0, a+ b, a, b. (Why three? Isn’t this four?)

HW: Prove that in an Abelian group, the set of all elements of order ≤ 2 form a subgroup.
(Can you generalize it?) [Hint: Use the standard (multiplicative) subgroup tests: 1. the set
is closed under multiplication; 2. the set is closed under inverse.]

HW: In a finite group, the first subgroup test alone is enough, that is: If (G, ·) is a finite
group and H is a non-empty subset of G closed under multiplication, then H is a subgroup.



Fermat’s “little theorem”

Theorem 3. Let p be prime and gcd(a, p) = 1. Then ap−1 ≡ 1 (mod p).

In general, let m > 1 and let ϕ(m) denote the number of positive integers less than m which
are coprime to m (Euler function). If gcd(a,m) = 1, then aϕ(m) ≡ 1 (modm).

Remark. The first statement (for prime p) was found by Fermat but proved by Euler, who
generalized it to arbitrary moduli m.

Proof. The theorem is a simple consequence of the following lemma, and the fact that Z∗m
is an Abelian group, where Z∗m is Zm restricted to all its invertible elements.

Lemma 4. If G is an Abelian group of order n and identity e, then an = e for all a ∈ G.

Proof. Let a ∈ G be arbitrary. The map f : G → G : g → ag is clearly a bijection, and
hence, ∏
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Remark. The conclusion of the Lemma is true for finite non-Abelian groups also (this is
Lagrange’s theorem), as stated in the handout groups and fields, but for the proof of this
general theorem one needs the notion of cosets.


