Theorem. Any finite subgroup of $SO(3)$ is isomorphic to a cyclic group C_n, or a dihedral group D_n, or one of groups A_4, S_4, A_5 (the symmetry groups of the five Platonic solids).

Sketch of proof

Let G be a finite subgroup of $SO(3)$ of order $n > 1$. We will write $G' = G \setminus \{e\}$.

Let S denote the unit sphere centered at the origin. For a rotation $g \in G'$, the two points where the axis of g pierce S are called poles. Clearly, a point $p \in \mathbb{R}^3$ is a pole if and only if $p \in S$ and p is fixed by at least one rotation in G': $(\exists g \in G')g(p) = p$.

We will write F for the set of all poles (of rotations in G'). Clearly F is finite (since $|F| \leq 2|G'|$). Given a point $p \in F$, the orbit $Gp = \{g(p) : g \in G\}$ of p with respect to G is the set of points where the rotations in G move the point p.

Lemma 1. The actions of elements of G move poles to poles:

$$(\forall p \in F)(\forall g \in G) g(p) \in F.$$

Given $p, q \in F$, we write $p \sim q$ if $q \in Gp$. Using that G is a group, it is easy to see that \sim is an equivalence relation. The equivalence classes are called orbits. Lemma 1 implies that the orbits partition F, that is, F is the disjoint union of orbits.

A pole $p \in F$ is a fixed point for several rotations in G' (all about the same axis), these rotations together with the identity form a cyclic subgroup of G; we write $m(p)$ for the order of that group, and call it the degree of the pole p. Clearly, for any $p \in F$,

$$m(p) = |\{g \in G : g(p) = p\}| = \max\{o(g) : g \in G, g(p) = p\}.$$

$$(\star)$$

Lemma 2. Within an orbit all poles have the same degree. Consequently, an orbit of degree m has exactly n/m points. (Why?)

Note that, by the first sentence of the last lemma, it makes sense to talk about $m(\varphi)$, the degree of orbit φ (being equal to the degree of any pole in φ).

Note also that a pole p and its polar opposite p' on the sphere are fixed points for the exact same $m(p) - 1$ rotations in G'. Thus, since every $g \in G'$ fixes exactly two poles,

$$2|G'| = 2(n - 1) = \sum_{p \in F} (m(p) - 1)$$

Thus, writing F/G for the set of orbits in F, we have

$$2(n - 1) = \sum_{\varphi \in F/G} \frac{n}{m(\varphi)} (m(\varphi) - 1)$$

that is,

$$2 \left(1 - \frac{1}{n}\right) = \sum_{\varphi \in F/G} \left(1 - \frac{1}{m(\varphi)}\right)$$

Since each $m(\varphi) \geq 2$, we get $2 \leq |F/G| \leq 3$, that is: a non-trivial finite subgroup of $SO(3)$ can only have two or three orbits in F.

The rest of the proof is Cataloguing.
Proof of Lemmas 1 and 2. Let \(p \in F \), let \(h \in G \) be arbitrary, and write \(q = h(p) \). Choose a \(g \in G' \) for which \(g(p) = p \) and \(m(p) = o(g) \). We need to show that \(q \in F \), that is, that there exists a \(g' \in G' \) such that \(g'(q) = q \) (since \(q \in S \) follows from the facts that \(p \in F \) and \(g \) is an isomorphism fixing the origin).

Indeed, let \(g' = hgh^{-1} \) (thus, \(g' \) is a conjugate of \(g \)). Since \(g \neq e \), so \(g' \neq e \), and hence \(g' \in G' \). Writing (as customary in group theory) composition as a product,

\[
g'(q) = (hgh^{-1})(q) = (hgh^{-1})(h(p)) = (hg)(h^{-1}h)(p) = (hg)(p) = h(g(p)) = h(p) = q,
\]
proving Lemma 1.

To prove Lemma 2, that is to show that \(m(q) = m(p) \), it is enough to prove the inequality \(m(q) = m(h(p)) \geq m(p) \), since the symmetry of the relation \(p \sim q \) then implies equality. Indeed, in virtue of (*), \(m(q) \geq o(g') \), since \(g' \) fixes \(q \). But \(o(g') = o(g) = m(p) \), since conjugate elements have the same order. (Why?)

For more information see
http://www-history.mcs.st-and.ac.uk/~john/geometry/Lectures/L11.html