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1 Introduction

The following axioms are among Euclid’s axioms for traditional plane geometry.

Axiom 0. Given any two lines, there is at most one point incident to both of them.

Axiom 1. Given any two points, there is a unique line incident to both of them.

Note: In this class, two lines/points means two distinct lines/points.

The phrase “at most” in Axiom 0 allows for parallel lines. That is, there may be two lines
that don’t intersect. If we forbid parallel lines, we get projective planes. That is, projective
planes satisfy Axiom 1 and

Axiom 2. Given any two lines, there is exactly one point incident to both of them.

In class, we discussed how “imaginary points” and an “imaginary line” can be added to the
real plane to get the real projective plane. These notes address the finite planes that satisfy
these axioms.

2 Examples

Consider the following examples.

Both of these are, in some sense, degenerate. In the first, we place any number of points
on a single line. In the second, we simply add another point outside the first line and then
draw connecting lines. There are also other degenerate examples, some of which have lines
which don’t even contain two points!

But there are nontrivial examples as well. Consider the Fano plane, pictured below. This
finite projective plane consists of 7 lines and 7 points. (Note that one of these lines is drawn
as a red circle. Each place where two lines cross only forms a point if it is indicated by a
black dot.)
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3 A New Axiom

To rule out the degenerate examples from the previous section, we add a new axiom.

Axiom 3. There exist four points so that no three of them are collinear.

Axiom 3 clearly implies that there is more than one line. To see that it rules out the other
degenerate examples, we prove the following useful lemma about planes satisfying Axioms
1, 2 and 3.

Lemma 1. No two lines can cover all points.

Indirect proof. Suppose that lines L1 and L2 cover all points. Let Q = {q1, q2, q3, q4} be
points so that no three are collinear. Q is guaranteed to exist by Axiom 3. By Axiom 2,
there is a unique point incident to both L1 and L2.

Case 1: Suppose that this point is an element of Q, say q1. Then each of the other three
points of Q lie on either L1 or L2. By the pigeon-hole principle, at least two of these three
points, say q2 and q3, lie on the same line. But then the “intersection point” of L1 and L2

are collinear with these two points. Contradiction.

q1

q4

q3 q2
L1

L2

Case 2: Suppose that the intersection point is not an element of Q. Then each element of
Q lies on either L1 or L2 but not both. By assumption, no three of them lie on the same
line. Hence two are incident to L1 and two are incident to L2. Without loss of generality,
suppose that q1 and q2 are incident to L1, and q3 and q4 are incident to L2.
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Axiom 1 guarantees the existence of a (unique) line L3 incident to q1 and q3. Similarly, there
must be a unique line L4 incident to q2 and q4. But by Axiom 2, there is a unique point p
which is incident to both L3 and L4. The point p cannot be an element of Q, as this would
give a set of three collinear elements in Q. Furthermore, it cannot be on L1 or L2 - Axiom
2 says that the elements of Q form the unique intersection points between L1 or L2 with L3

or L4. Therefore p is not covered by L1 and L2. Contradiction.

4 Duality

The Fano plane is not the only (non-degenerate) finite projective plane. In fact, there are
infinitely many (as we will see in later sections). All of them are very symmetric. One type
of symmetry they exhibit is a duality between points and lines. The images we’ve seen above
are just illustrations of plane geometries. Technically, each plane geometry is just a set of
points P , a set of lines L, and a relation called incidence I which consists of point-line pairs.
Axioms 1, 2 and 3 are restrictions on I. We claim here that the geometry consisting of
points L, lines P and incidence I also satisfies Axioms 1, 2 and 3. To see this, it is enough
to show that the “dual” of Axiom 3 is true. Axioms 1 and 2 are already dual to one another.

Exercise 1. Show that the dual of Axiom 3 is true. That is, in any finite projective plane,
there are four lines so that no three of them are incident to a single point.

Then we can apply duality to get a second version of every theorem we prove. In particular,

Corollary 1. No two points cover all lines.

Proof. We do not claim that every finite projective plane is the same as the one obtained
by swapping points and lines. However, the dual of any particular finite projective plane is
also a finite projective plane. So in the dual, no two lines cover all points. Then applying
duality again to the dual gives back the original plane. So, in the original plane, no two
points cover all lines.
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5 Classifying finite projective planes

Theorem 1. Any two lines have the same number of points. We write n+1 for this number.

Proof. Let L1 and L2 be any two lines. By Lemma 1, there is a point q which is incident
to neither L1 nor L2. Suppose L1 is incident to n + 1 points called p1, p2, . . . , pn+1. Then
Axiom 1 gives n + 1 lines incident to q and each pi. Call them L(q, pi). Then for each
1 ≤ i ≤ n + 1, Axiom 2 gives a point p′i which is incident to both L2 and L(q, pi).

p'

L1

L2

1

q

p1 p2 p3 p4

p5p'2 p'3 p'4 = p'5

By Axiom 1, all of the lines L(q, pi) are distinct. (For any i 6= j, the unique line containing
pi and pj is L1, which does not contain q.) By Axiom 2, all of the points p′i are all distinct.
(For any i 6= j, the unique point incident to both L(q, pi) and L(q, pj), is q.) Furthermore,
by Axioms 1 and 2, these are all of the points incident to L2. (Another such point would
form a new line with q, and this line would have to intersect L1 somewhere.) Hence L2 is
incident to exactly n + 1 points.

Theorem 2. Every point is incident to exactly n + 1 lines.

Proof. Let p be any point. By Lemma 1, there is a line L which is not incident to p. We
claim that the points incident to L correspond to all the lines incident to p. The details of
this proof are analogous to those of Theorem 1. We provide the illustration and leave the
rest to the reader.

L

p

4



Theorem 3. There are exactly n2 + n + 1 points. There are exactly n2 + n + 1 lines.

Proof. Let p be any point. There are n+1 lines incident to p and each contains an additional
n points. This gives n(n + 1) + 1 points in total. We leave it to the reader to see that these
points are distinct and that they’re all of the points.

L
p

L

L1

2

n+1

n

n

The second result can be obtained by a similar argument (see below), or by applying duality.

n

n

n

L

p1

p2

pn+1

Therefore we can classify each finite projective plane according to the parameter n. One
natural question is “for which n does such a plane exist?” Some more are “can we construct
them?” and “are they unique?” We will not address the last question, but the first two can
be (partially) answered using abstract algebra!
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6 Finite fields

A detailed definition of fields will be presented in later talks. For now, think of a field F as
a set of numbers that you can add, subtract, multiply and divide (by non-zero elements).
One important field is given by modular arithmetic. Pick a prime p and add, subtract, and
multiply the numbers {0, 1, . . . , p− 1} normally. However, when your calculations result in
a number outside {0, 1, . . . , p− 1}, add or subtract p as many times as needed. For clarity,
we will write equality under this system as ≡p. For example, 5× 3 = 15 but for p = 7

5× 3 ≡p 1 since 15− 7− 7 = 1.

Hence 3 acts as the multiplicative inverse of 5. In other words, in this magical world of
modulo 7 arithmetic, dividing by 5 always gives an integer - the same integer resulting from
multiplying with 3.

We claim (but don’t prove here) that, for any prime p, the numbers {1, 2, . . . , p − 1} are
invertible modulo p. In other words, we can divide by anything other than 0. Therefore
{0, 1, . . . , p − 1} is a field with with finitely many elements. This field is denoted Fp. It is
possible to construct fields with q elements if and only if q is a prime power.

7 The Fano plane and finite fields

Let’s look at the Fano plane again, but now with labels. In the figure below, black labels
correspond to points and red labels correspond to lines.

001

010

100

011110

101

111

100001

010

10
1

110011 111

Each label consists of three 0’s and 1’s. In fact all triples of 0’s and 1’s are used except 000.
These labels reflect an underlying rule for incidence: A point xyz is incident to the line abc
if and only if

ax + by + cz ≡2 0.
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A simple consequence of this rule is the fact that any two points on the same line add up
(coordinate-wise, modulo 2) to the third point on that line. For example, the points 010,
111, and 101 all lie on the central vertical line. Remember that 1 + 1 ≡2 0. Therefore the
(coordinate-wise, modulo 2) sum of 010 and 111 is 101.

This observation is actually a recipe for building the Fano plane using F2. Step 1: Make a
point and a line for each nonzero triple of integers in F2. Step 2: Say point xyz is incident
to line abc iff ax + by + cz ≡2 0. The drawing above is just a representation of this rule.

We can do the same for Fp for any prime p with a small tweak. Underlying everything here is
a deep result about linear algebra over finite fields. Points and lines correspond to subspaces
of F3

p. A subspace of dimension 1 (a point here) consists of all scalar multiples of a single
vector. In simpler terms, points aren’t really vectors, they’re directions. This is similar to
the “points at infinity” we discussed in class for the real projective plane - we add one in
each direction. A subspace of dimension 2 (a line here) consists of all linear combinations of
two vectors. This is why labels of points on a line are closed under addition.

The bottom line: we need to ignore scalar multiples. We didn’t need this idea for F2 because
the only scalar multiples in this field are 0 and 1. In F3 we have a nontrivial scalar. Since
2×2 ≡3 1, the vectors 120 and 210 represent the same direction. In fact there are 13 distinct,
nonzero directions:

001=002 010=020 100=200
011=022 101=202 110=220
012=021 102=201 120=210
112=221 121=212 211=122

111=222

In general, for Fp, there are (p3−1)/(p−1) directions. This is because there are p3−1 nonzero
vectors and p−1 scalar multiples (times 1, 2, . . . , p−1) of each vector that “point in the same
direction.” Take a point p and a line L. Pick some vectors xyz and abc representing their
respective directions. Then we define p to be incident to L exactly when ax + by + cz ≡p 0.
The figure below shows the resulting plane for F3.
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Each resulting plane satisfies Axioms 1, 2, and 3. This is a nontrivial fact but it can be
proven using elementary facts about numbers. For example, it is easy to see that no three
of the points 001, 010, 100, and 111 can lie on a single line. You can also show that each
point is incident to p+ 1 lines, and each line is incident to p+ 1 points. Finally, the number
of points (and lines) is p3 − 1/p− 1. But simple polynomial division shows us that

p3 − 1

p− 1
= p2 + p + 1.

So we have a concrete model for at least one finite projective plane for each prime n in
Theorems 1, 2, and 3. You can extend this to prime powers n by using the (more involved)
finite fields of prime power order. It is unknown whether other finite projective planes exist.
Using number theory and computer simulations, researchers have shown that such planes do
not exist for n = 6 and n = 10. Already the case n = 12 is open.
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