1. Let \(\tau \) and \(\rho \) be stopping times with respect to a filtration \(\{ \mathcal{F}(t); t \geq 0 \} \).

a) Show that \(\tau \wedge \rho \) (\(\equiv \min\{\tau, \rho\} \)) is a stopping time.

b) Show that \(\tau \vee \rho \) (\(\equiv \max\{\tau, \rho\} \)) is a stopping time.

2. Let \(X = \{X(t); t \geq 0\} \) be a stochastic process whose sample paths are all continuous, and assume \(X(0)(\omega) = 0 \) for all \(\omega \). Let \(\{\mathcal{F}^X(t)\}_{t \geq 0} \) be the filtration generated by \(X \).

In each case below, determine whether the random time must necessarily be an \(\{\mathcal{F}^X(t); t \geq 0\} \)-stopping time. Justify your answer briefly in each case; you may use the informal rule of thumb and/or general results about stopping times, as in the Lecture Notes for lecture 4.

(a) \(T_1 = \inf\{t; X^2(t) \geq 1\}; \)

(b) \(T_2 = \inf\{t; \int_0^t X^2(s) \, ds > 1\}. \)

(c) \(T_3 = \sup\{t; t \leq 1 \text{ and } X(t) = 0\}; \)

(d) Suppose that \(|X(t)|(\omega) > 0 \) for all \(\omega \in \Omega \) and all \(t > 0 \), and reconsider \(T_2 = \inf\{t; \int_0^t X^2(s) \, ds > 1\}. \)

(e) \(T_5 = \inf\{t; X(t) \geq X(t + 1)\}. \)

3. Let \(\tau \) be a stopping time with respect to a filtration, \(\{\mathcal{F}(t); t \geq 0\} \).

a) Let \(n \) be any positive integer. Define a discrete approximation \(\tau^{(n)} \) to \(\tau \) by setting \(\tau^{(n)}(\omega) = \frac{k}{n} \) if \(\frac{k-1}{n} < \tau \leq \frac{k}{n} \). This approximates \(\tau \) from above. Show that \(\tau^{(n)} \) is an \(\{\mathcal{F}(t); t \geq 0\} \)-stopping time.
b) Let \(n \) be any positive integer and define a discrete approximation to \(\tau \) from below by \(\tau_n(\omega) = \frac{k-1}{n} \) if \(\frac{k-1}{n} < \tau \leq \frac{k}{n} \). Is \(\tau_n \) in general an \(\{\mathcal{F}(t); t \geq 0\}\)-stopping time? Explain.

4. (Optional Stopping) Let \(\{X_n\} \) be a martingale with respect to the filtration \(\{\mathcal{F}_n\} \); thus (i) \(X_n \) is \(\mathcal{F}_n \)-measurable for each \(n \), (ii) \(E[|X_n|] < \infty \) for each \(n \), and (iii) \(E[X_{n+1}|\mathcal{F}_n] = X_n \) for each \(n \). Let \(\tau \) be a stopping time with respect to \(\{\mathcal{F}_n\} \). Show that the stopped process \(X_{n \wedge \tau} \) is also a martingale with respect to \(\{\mathcal{F}_n\} \).

Hint: Write \(X_{n \wedge \tau} = \sum_{k=0}^{n} X_k 1_{\{\tau = k\}} + X_n 1_{\{\tau > n\}} \). Observe that \(\{\tau > n\} \) is \(\mathcal{F}_n \)-measurable (why?).