1 Optimization under one constraint

1.1 In two dimensions

Let $f(x, y)$ be given. Previously we discussed how to find the max and min of $f(x, y)$ over the plane and over a region \mathbb{R}. There is yet another type of optimization: finding the extrema of f along a curve. That is we consider

$$\max_{(x, y)} f(x, y) \quad \text{s.t.} \quad g(x, y) = c.$$

We say $f(x, y)$ is the objective function and $g(x, y) = c$ is the constraint that the maximization of f is subject to. We seek a necessary condition that describes the candidates for the optimal points (a, b). Note that $g(x, y) = c$ describes a curve so it effectively reduces our optimization problem to 1 dimension. That is let $r(t)$ be a parametrization corresponding to the curve $g(x, y)$ then the problem becomes

$$\max_t f(r(t)).$$

But here we can just differentiate in t and use the first derivative condition:

$$f'(t) = \nabla f(r(t)) \cdot r'(t) = 0.$$ \hspace{1cm} (1)

On the other hand, $r(t)$ is a parametrization corresponding to the curve $g(x, y)$ means that

$$g(r(t)) = c.$$
Thus
\[
\frac{d}{dt}g(r(t)) = \nabla g(r(t)) \cdot r'(t) = 0. \tag{2}
\]
Comparing (1) and (2) we see that (since we are in 2 dimensions) \(\nabla f \) must be parallel to \(\nabla g \) at the point \(t_0 \) on the curve that satisfies (1) and (2). That is
\[
\nabla f(a,b) = \lambda \nabla g(a,b) \tag{3}
\]
if \((a,b)\) is the optimal point. \(\lambda \) is called the Lagrange multiplier of the optimization problem.

The equation (3) has a nice geometrical interpretation:

\[
\begin{align*}
\text{to optimize } f \text{ along the curve } g(x,y) = c, & \text{ we consider various level curves of } f. \\
& \text{At the point of intersection of these two curves, if the gradient of } f \text{ is not orthogonal to the tangent of the curve } g(x,y) \text{ we can move along the curve } g(x,y) = c \text{ to arrive at a higher level curve of } f. \text{ Thus we can repeat this process until the gradient of } f \text{ is orthogonal to the tangent of } g(x,y). \text{ This is the point where the maximum may happen (because we will move out of the curve } g(x,y) = c \text{ if we follow the gradient of } f \text{ at this point).}
\end{align*}
\]

1.2 In three dimensions

Now consider the function \(f(x,y,z) \). We want to optimize \(f \) subject to the constraint:
\[
g(x,y,z) = c.
\]
The technique is exactly the same as above. We let \(\mathbf{r}(s,t) \) be a parametrization of the surface given by \(g(x,y,z) = c \). This reduces \(f \) as a function of 2 variables \(s,t \). Thus the first order condition requires

\[
\frac{\partial}{\partial s} f(\mathbf{r}(s,t)) = \frac{\partial}{\partial t} f(\mathbf{r}(s,t)) = 0.
\]

But this becomes

\[
\nabla f \cdot \frac{\partial}{\partial s} \mathbf{r}(s,t) = 0 \quad (4)
\]

\[
\nabla f \cdot \frac{\partial}{\partial t} \mathbf{r}(s,t) = 0. \quad (5)
\]

We can verify that since \(g(\mathbf{r}(s,t)) = c \), \(g \) satisfies exactly the equation (4). Thus \(\nabla f \) and \(\nabla g \) must be parallel again. Thus there must exists a \(\lambda \) so that

\[
\nabla f = \lambda \nabla g.
\]

2 Optimization under multiple constraints

Now consider the function \(f(x,y,z) \). We want to optimize \(f \) subject to two constraints:

\[
g_1(x,y,z) = c_1
\]

\[
g_2(x,y,z) = c_2.
\]

Let \(\mathbf{r}(t) \) be the parametrization of the curve that satisfies

\[
g_1(\mathbf{r}(t)) = c_1
\]

\[
g_2(\mathbf{r}(t)) = c_2.
\]

Then we require

\[
\frac{d}{dt} f(\mathbf{r}(t)) = \nabla f \cdot \mathbf{r}'(t) = 0. \quad (6)
\]

On the other hand

\[
\nabla g_1 \cdot \mathbf{r}'(t) = 0 \quad (7)
\]

\[
\nabla g_2 \cdot \mathbf{r}'(t) = 0. \quad (8)
\]

Assuming \(\nabla g_1, \nabla g_2 \) are not parallel, then (6) and (7) say that \(\nabla f \) must be in the plane determined by \(\nabla g_1, \nabla g_2 \). That is there must exist \(\lambda, \mu \) so that

\[
\nabla f = \lambda \nabla g_1 + \mu \nabla g_2.
\]