1 Expectation

1.1 The general results

Proposition 1.1. If X, Y have a joint probability mass function $p(x, y)$ then

$$E(g(X, Y)) = \sum_{x, y} g(x, y)P(X = x, Y = y).$$

If X, Y have a joint density function $f(x, y)$ then

$$E(g(X, Y)) = \int_{-\infty}^\infty \int_{-\infty}^\infty g(x, y)f(x, y)dxdy.$$

Corollary 1.2. Let X, Y be either two discrete or continuous RVs. Then

$$E(X + Y) = E(X) + E(Y).$$

By induction,

$$E(\sum_{i=1}^n X_i) = \sum_{i=1}^n E(X_i).$$

1.2 Examples

Example 1.3. Accident location X is uniformly distributed on a road of length L. At the time of the accident, the ambulence location is also independently uniformly distributed on the same road. What is the expected distance between the ambulence and the accident?
Ans:
\[E(|X - Y|) = \int_0^L \int_0^L \frac{1}{L^2} |x - y| \, dx \, dy = \frac{L}{3}. \]

Example 1.4. Sample mean

Let \(X_1, \cdots, X_n \) be identically distributed. Let \(\overline{X} := \frac{1}{n} \sum_i X_i \). Compute \(E(\overline{X}) \).

Ans:
\[E(\overline{X}) = \frac{1}{n} \sum_i E(X_i) = E(X_1). \]

Example 1.5. Mean of a hypergeometric

\(n \) balls are selected without replacement from an urn with \(N \) balls, \(m \) of which are white. Find the expectation of the number of white balls in the sample.

Ans: Let \(X_i, i = 1, \cdots, n \) be RVs such that
\[X_i = \begin{cases} 1, & \text{if \ ith \ ball \ is \ white} \\ 0, & \text{otherwise.} \end{cases} \]

Then \(X = \sum_{i=1}^n X_i \) represents number of white balls in the sample. Thus
\[E(X) = \sum_{i=1}^n E(X_i) = nP(\text{ith ball is white}) = \frac{nm}{N}. \]

Example 1.6. Hat selecting problem

\(N \) people select their hats from a pile of \(N \) hats. Find the expected number of people selecting their own hat.

Ans: Let \(X_i, i = 1, \cdots, N \) be RVs such that
\[X_i = \begin{cases} 1, & \text{if \ ith \ person \ selects \ his \ own \ hat} \\ 0, & \text{otherwise.} \end{cases} \]

Then \(X = \sum_{i=1}^N X_i \) represents number of people selecting their own hat. Thus
\[E(X) = \sum_{i=1}^N E(X_i) = NP(\text{ith ball is white}) = \frac{N}{N} = 1. \]
Example 1.7. Coupon selecting problem

Suppose there are N types of coupons, each time one collects, any type is equally likely. Find the expected number of coupons one needs to collect before having a complete set of each type.

Ans: Let $X_i, i = 0, 1, N - 1$ be the number of additional coupons that need to be obtained after the i distinct types have been collected in order to obtain another distinct type. Then the total number of coupons required is

$$X = \sum_{i=0}^{N-1} X_i.$$

Each X_i has a Geometric(p_i) distribution with

$$p_i = \frac{N - i}{N}.$$

Therefore $E(X_i) = \frac{1}{p_i} = \frac{N}{N - i}$. Thus $E(X) = \sum_{i=0}^{N-1} \frac{N}{N - i}$.

Example 1.8. Duck shooting problem

Ten hunters are shooting at the ducks, each choosing his target at random. Suppose each also independently hits his target with probability p, and there are 10 ducks. Find the expected number of ducks that escape unhurt.

Let $X_i, i = 1, \cdots, N$ be RVs such that

$$X_i = 1, \text{ if } \text{ith duck escapes unhurt}$$
$$= 0, \text{ otherwise.}$$

Then $X = \sum_{i=1}^{N} X_i$ represents number of ducks escaped unhurt.

Let us compute the probability of the ith duck being hurt. Let E_{ij} be the event that the ith duck got hit by the jth hunter. Also let F_{ij} be the event that the jth hunter locks on the ith duck. Then

$$P(E_{ij}) = P(E_{ij}|F_{ij})P(F_{ij}) = \frac{p}{10}.\]

(Note that this problem is unlike the hat-selection problem in that two hunters can hit the same duck. Thus if we let E_i be the event that the ith duck got hurt, even though this is still true:

$$P(E_i) = \sum_{i=1}^{10} P(E_i|F_{ij})P(F_{ij}),$$

3
we do NOT have $P(E_i|F_{ij}) = p$ since even if the jth hunter locks on the ith duck, it can get hurt by other hunters as well.)

By assumption, $E_{i1}, E_{i2}, \cdots, E_{i10}$ are independent. Thus

$$P(E_{ij}^c) = (1 - \frac{p}{10})^{10}.$$

Thus $E(X) = 10(1 - \frac{p}{10})^{10}$.

Example 1.9. The inclusion exclusion principle

Let E_1, E_2, \cdots, E_n be events and X_i be random variables such that

$$X_i = 1, \text{ if } E_i \text{ occurs}$$

$$= 0, \text{ otherwise.}$$

Let $X = 1 - \prod_{i=1}^n (1 - X_i)$. Then

$$X = 1, \text{ if at least one of } E_i \text{ occurs}$$

$$= 0, \text{ non of } E_i \text{ occurs.}$$

Then $E(X) = P(\bigcup_{i=1}^n E_i)$. On the other hand, note that

$$1 - \prod_{i=1}^n (1 - X_i) = \sum_{i=1}^n X_i - \sum_{i<j} X_i X_j + \cdots + (-1)^{n+1} X_1 \cdots X_n.$$

From this we derive the inclusion exclusion formula.

2 Covariance and Variance

2.1 General results

Definition 2.1. The covariance between X, Y, denoted as $Cov(X, Y)$ is defined as

$$Cov(X, Y) = E[(X - EX)(Y - EY)] = E(XY) - E(X)E(Y).$$

Remark, by the following proposition:

Proposition 2.2. If X, Y are independent then $E(g(X)h(Y)) = E(g(X))E(h(Y))$,

we have that if X, Y are independent then $Cov(X, Y) = 0$.

However, note that $Cov(X, Y) = 0$ does NOT imply that X, Y are independent, as the following example shows.

Example 2.3. Let $X = -1, 0, 1$ with probability 1/3 each. Let $Y = 0$ if $X \neq 0$ and 1 if $X = 0$. Then $E(XY) = E(X) = 0$. Thus $Cov(X, Y) = 0$. But clearly X, Y are NOT independent.
2.2 Some properties

Proposition 2.4. We have:
1. $\text{Cov}(X, Y) = \text{Cov}(Y, X)$;
2. $\text{Cov}(aX, bY) = ab\text{Cov}(X, Y)$;
3. $\text{Cov}(\sum_i X_i, \sum_j Y_j) = \sum_{i,j} \text{Cov}(X_i, Y_j)$;
4. $\text{Cov}(X, X) = \text{Var}(X)$.
5. If X, Y are independent, $\text{Cov}(X, Y) = 0$.

From properties 3 and 5, we have the following result about the variance of sum of independent RVs:

Proposition 2.5. If X_1, X_2, \cdots, X_n are independent then

$$\text{Var}\left(\sum_i X_i\right) = \sum_i \text{Var}(X_i).$$

2.3 Examples

Example 2.6. Variance of sample mean and sample variance

Let X_1, \cdots, X_n be independent and identically distributed. Let $\bar{X} := \frac{1}{n} \sum_i X_i$. Compute $\text{Var}(\bar{X})$. Also denote

$$S^2 = \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{n-1}.$$

Compute $E(S^2)$.

Ans:

$$\text{Var}(\bar{X}) = \frac{1}{n^2} \sum_i \text{Var}(X_i) = \frac{\text{Var}(X)}{n}.$$

$$E(S^2) = \frac{1}{n-1} E\left(\sum_{i=1}^n (X_i - \bar{X})^2\right)$$

$$= \frac{1}{n-1} E\left(\sum_{i=1}^n (X_i^2 - 2\bar{X}X_i + \bar{X}^2)\right)$$

$$= \frac{1}{n-1} E\left(\sum_{i=1}^n X_i^2 - 2n\bar{X}^2 + n\bar{X}^2\right)$$

$$= \frac{1}{n-1} E\left(\sum_{i=1}^n X_i^2 - n\bar{X}^2\right)$$
Denoting $E(X_i) = \mu$ and $\text{Var}(X_i) = \sigma^2$ we see that $E(X_i^2) = \mu^2 + \sigma^2$ and $E(\overline{X}^2) = \frac{\sigma^2}{n} + \mu^2$. Thus

$$E(S^2) = \frac{1}{n-1}[n(\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2)] = \sigma^2 = \text{Var}(X_1).$$

We denote $\rho(X,Y) := \frac{\text{Cov}(X,Y)}{\text{Var}(X)\text{Var}(Y)}$ as the correlation between X, Y. It is a number between $[-1,1]$ where -1 denote perfect negative correlation, 0 non-correlation and 1 perfect positive correlation.

Example 2.7. Correlation and conditional probability

Let A, B be 2 events and I_A, I_B RVs such that

$$I_A(I_B) = 1 \text{ if } A (B) \text{ occurs}$$
$$= 0 \text{ otherwise.}$$

Then $E(I_A) = P(A), E(I_B) = P(B), E(I_AI_B) = P(AB)$. Thus

$$\text{Cov}(I_A, I_B) = P(AB) - P(A)P(B) = P(B)(P(A|B) - P(A)).$$

Thus we see that A, B are positively correlated if event B happenning makes it more likely for A to happen, negatively correlated if B happenning makes it less likely for A to happen, and not correlated if B happenning does not influence A.

Example 2.8. Zero-correlation between sample deviation and sample mean

Let X_1, \cdots, X_n be independent and identically distributed. Show that

$$\text{Cov}(X_i - \overline{X}, \overline{X}) = 0.$$

Ans:

$$\text{Cov}(X_i - \overline{X}, \overline{X}) = \text{Cov}(X_i, \overline{X}) - \text{Var}(\overline{X})$$
$$= \frac{1}{n} \sum_j \text{Cov}(X_i, X_j) - \frac{\sigma^2}{n}$$
$$= \frac{\sigma^2}{n} - \frac{\sigma^2}{n} = 0.$$

Remark: It follows from this computation that

$$\text{Cov}(\frac{\sum_i X_i - \overline{X}}{n-1}, \overline{X}) = 0.$$
However, we CANNOT conclude that $\text{Cov}(S^2, \bar{X}) = 0$ from the above, because

$$\sum_{i}(X_i - \bar{X})^2 \over n - 1,$$

and we cannot “pass the square inside the sum.”

There is a special case worth noticing. That is, when X, Y have joint Normal distribution (see next lecture for the definition), then X, Y are independent if and only if $\text{Cov}(X, Y) = 0$. Thus, if $\bar{X}, X_i - \bar{X}$ have joint Normal distribution (which is the case if, e.g., X_i are i.i.d. Normals) then it follows from the above computation that $\bar{X}, X_i - \bar{X}$ are also independent. Then we CAN conclude that S^2, \bar{X} are independent because X, Y independent implies X^2, Y independent.