1 Discrete RVs

1.1 Joint distribution

Let X, Y be random variables. To have all the information about X, Y we need to know $P(X = i, Y = j)$ for all possible i, j in the range of X, Y. However, it may NOT be that X, Y are independent. In other words, knowing $P(X = i)$ and $P(Y = j)$ is not enough to determine $P(X = i, Y = j)$. In this case, we need to list all possible pairs of $P(X = i, Y = j)$ in a 2 dimensional table. This is the so-called joint distribution of X and Y.

Example 1.1. Suppose 3 balls are randomly selected from an urn containing 3 red, 4 white and 5 blue. Let X and Y denote, respectively, the number of red and white balls in the sample. Find $P(X = i, Y = j)$ for all possible (i, j).

Ans: It’s best to present these informations in a table. We’ll just list the answers here.

\[
p(0, 0) = \frac{\binom{3}{0}}{\binom{12}{3}}; p(0, 1) = \frac{\binom{3}{1}\binom{5}{2}}{\binom{12}{3}}; p(0, 2) = \frac{\binom{3}{2}\binom{4}{1}}{\binom{12}{3}}; p(0, 3) = \frac{\binom{3}{3}}{\binom{12}{3}} \\
p(1, 0) = \frac{\binom{3}{1}\binom{5}{2}}{\binom{12}{3}}; p(1, 1) = \frac{\binom{3}{1}\binom{4}{1}\binom{5}{1}}{\binom{12}{3}}; p(1, 2) = \frac{\binom{3}{1}\binom{4}{2}}{\binom{12}{3}} \\
p(2, 0) = \frac{\binom{3}{2}\binom{4}{1}}{\binom{12}{3}}; p(2, 1) = \frac{\binom{3}{2}\binom{4}{2}}{\binom{12}{3}} \\
p(3, 0) = \frac{\binom{3}{3}}{\binom{12}{3}}.
\]
For a joint distribution, one should check that

$$\sum_{i,j} P(X = i, Y = j) = 1.$$

Note that the above is a double sum over i, j.

1.2 Marginal distribution

Intuitively, one can recover the information about X from knowing both about X, Y. This can be done, via the following:

$$P(X = i) = \sum_j P(X = i, Y = j)$$

since

$$\{X = i\} = \bigcup_j \{X = i, Y = j\}.$$

Similarly, we have

$$P(Y = j) = \sum_i P(X = i, Y = j).$$

The distribution $P(X = i)$ is referred to as the marginal distribution of X. The distribution $P(Y = j)$ is referred to as the marginal distribution of Y.

2 Continuous random variables

2.1 Joint density

Taking the motivation from the definition of a continuous RV, we say two RVs X and Y are *jointly continuous* if there exists a function $f(x, y)$ such that

$$f(x, y) \geq 0$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$$

We refer to $f(x, y)$ as the joint density of X, Y. Then we define

$$P(x_1 \leq X \leq x_2, y_1 \leq Y \leq y_2) = \int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y) dx dy.$$
From which it follows that

\[P(X = x, Y = y) = 0, \]

and thus

\[P(x_1 \leq X \leq x_2, y_1 \leq Y \leq y_2) = P(x_1 < X \leq x_2, y_1 \leq Y \leq y_2) \]
\[= P(x_1 < X < x_2, y_1 \leq Y \leq y_2) \]
\[= P(x_1 \leq X \leq x_2, y_1 < Y \leq y_2) \]
\[= P(x_1 \leq X \leq x_2, y_1 \leq Y < y_2) \cdots \]

as well as

\[P(X \leq x, Y \leq y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv. \]

The function \(F(x, y) = P(X \leq x, Y \leq y) \) is referred to as the joint cumulative distribution function of \(X \) and \(Y \). If \(X, Y \) are continuous, then \(F \) is jointly differentiable in \(x, y \) and

\[f(x, y) = \frac{\partial^2}{\partial x \partial y} F(x, y). \]

Example 2.1. (Uniform on a unit square)

Let \(X, Y \) have a joint density

\[f(x, y) = \begin{cases} 1, & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0, & \text{otherwise} \end{cases} \]

Then for \(0 \leq x \leq 1, 0 \leq y \leq 1 \),

\[F(x, y) = \int_{0}^{x} \int_{0}^{y} dxdy = xy. \]

Note that \(F(x, y) \) is a constant in \(x \) for \(x \geq 1 \) since for \(x \geq 1 \) and \(0 \leq y \leq 1 \)

\[F(x, y) = \int_{0}^{1} \int_{0}^{y} dxdy = y, \]

agreeing with the fact that

\[f(x, y) = \frac{\partial^2}{\partial x \partial y} F(x, y) = 0 \text{ for } x \geq 1. \]

Similarly \(F(x, y) \) is a constant in \(y \) for \(x \geq 1 \). And finally for \(0 \leq x, y \leq 1 \)

\[\frac{\partial^2}{\partial x \partial y} F(x, y) = \frac{\partial^2}{\partial x \partial y} xy = 1 = f(x, y). \]

3
2.2 Marginal distribution, marginal density

Again, we have information about X, Y. How can we find information about X given this information? First, note that

$$P(X \leq x) = P(X \leq x, Y < \infty) = \lim_{y \to \infty} F(x, y),$$

since the set $\{Y < \infty\}$ has probability 1.

That is

$$P(X \leq x) = \int_{-\infty}^{x} \int_{-\infty}^{\infty} f(u, v) dudv$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u, v) dvdu.$$

For a fix u, note that

$$\int_{-\infty}^{\infty} f(u, v) dv$$

is a function of u. Therefore, differentiating with respect to x on both sides gives

$$f_X(x) = \int_{-\infty}^{\infty} f(x, v) dv$$

We call $f_X(x)$ the marginal density of X and $F_X(x) = P(X \leq x)$ the marginal cdf of X. Similarly we have

$$f_Y(y) = \int_{-\infty}^{\infty} f(u, y) du,$$

and the cumulative distribution function of Y is

$$P(Y \leq y) = \int_{-\infty}^{y} f_Y(u) du = \int_{-\infty}^{\infty} f(u, v) dvdu.$$

3 Independence

We say, generally that 2 RVs X, Y are independent if for any subsets A, B of the real line:

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B).$$

In the case that X, Y are either jointly discrete or jointly continuous, we can say more.
3.1 Discrete RV

Let \(X, Y \) be discrete RVs with joint distribution \(P(X = i, Y = j) \). Then \(X, Y \) are independent if and only if
\[
P(X = i, Y = j) = P(X = i)P(Y = j).
\]

Proof.
\[
P(X \in A, Y \in B) = \sum_{x \in A} \sum_{y \in B} P(X = x, Y = y) = \sum_{x \in A} P(X = x) \sum_{y \in B} P(Y = y) = P(X \in A)P(Y \in B).
\]

Example 3.1. Suppose that \(n + m \) independent trials having a common probability success \(p \) are performed. If \(X \) is the number of successes in the first \(n \) trials, \(Y \) the number of successes in \(m \) trials, then \(X \) and \(Y \) are independent. However, let \(Z \) be the number of total successes. Then \(X \) and \(Z \) are NOT independent.

3.2 Continuous RV

Let \(X, Y \) be discrete RVs with joint density \(f_{XY}(x, y) \). Then \(X, Y \) are independent if and only if
\[
f_{XY}(x, y) = f_X(x)f_Y(y).
\]

Proof.
\[
P(X \in A, Y \in B) = \int_A \int_B f_{XY}(x, y) \, dx \, dy = \int_A \int_B f_X(x)f_Y(y) \, dx \, dy = \int_A f_X(x) \int_B f_Y(y) = P(X \in A)P(Y \in B).
\]

Example 3.2. Two persons decide to meet at a certain location. If each of them independently arrives at a time uniformly distributed between 12 - 1 pm, find the probability that the first to arrive has to wait longer than 10 minutes.

Ans: Let \(X, Y \) denote the time the first and the second person arrives. Then \(X, Y \) are independent Uniform(0,60). We want to compute
\[
P(X + 10 < Y) + P(Y + 10 < X) = 2P(X + 10 < Y),
\]
by symmetry. We have

\[2P(X + 10 < Y) = 2 \int \int_{x+10<y} f(x,y) \, dx \, dy \]
\[= 2 \int_{10}^{60} \int_{0}^{y-10} (1/60)^2 \, dx \, dy \]
\[= \frac{2}{60^2} \int_{10}^{60} (y - 10) \, dy \]
\[= \frac{25}{36}. \]

Example 3.3. If the joint density function of \(X\) and \(Y\) is

\[f(x,y) = 6e^{-2x}e^{-3y}, \quad 0 < x < \infty, \quad 0 < y < \infty, \]
\[= 0 \quad \text{otherwise} \]

are they independent? What if

\[f(x,y) = 24xy, \quad 0 < x, y < 1, \quad 0 < x + y < 1 \]
\[= 0 \quad \text{otherwise} \]

Ans: The RVs are independent in the first case and not in the second. The reason is if we denote

\[1(x,y) = 1 \quad \text{if} \quad 0 < x, y < 1, \quad 0 < x + y < 1 \]
\[= 0 \quad \text{otherwise} \]

then we see that for the second case

\[f(x,y) = 24x1(x,y), \]

and clearly the function \(1(x,y)\) does not factor.