1 Textbook (Stampfli and Goodman)

A. Section 3.1, Page 49: 1, 2, 3.
Answer:
1. $2.66. The two Tuesday nodes are $2.18 and $3.63.
2. $pu + (1 − p)d = 1.04$. A formula on page 48 of the textbook states that

\[S_0(pu + (1 − p)d)^2 = E(S_2) = 27.15 \]

So that $S_0 = 25.1$. The values for S_1 are $uS_0 = 30.12$ and $dS_0 = 20.08$.
3. Since $pu + (1 − p)d = 1$, $E(S_{k+1}|S_k = x) = x$.

B. Section 3.2 Page 51: 1, 2, 3, 4.
Answer:
1. 39.90
2. $q = \frac{e^{0.06-0.8}}{1.7-0.8} = 0.2909$. The expiration values are 0, 137, 450. $V = \$29.92$.
3. 8.81.

2 Additional problems

In all of these problems, Q will denote the risk neutral probability measure. We also take the length of one period, τ to be 1 and the risk free interest rate to be a constant r.

We consider the following formulation for the binomial model:

\[S_k = S_0X_1X_2...X_k, 1 \leq k \leq n \]
where for $0 < d \leq e^{rt} \leq u$, X_i are i.i.d. with distribution

\[X_i = u \text{ with probability } q \]
\[X_i = d \text{ with probability } 1 - q. \]

1. (Extra credit - 5 pts) Suppose $r = 0$. Compute

\[E^Q((S_5 - S_3)^+|S_3). \]

Interpretation: This is the price for a European call option entered at time $k = 3$ with strike price S_3 and expiration time $n = 5$. Note that S_3 is known at time $k = 3$ so this call option makes sense.

Answer:

\[E^Q((S_5 - S_3)^+|S_3) = E^Q(S_3X_4X_5 - S_3)^+|S_3) \]
\[= E^Q(S_3(X_4X_5 - 1)^+|S_3). \]

There are two cases:

Case 1: $ud > 1$. Then $(X_4X_5 - 1)^+ = 0$ on $(\omega_0, \omega_1, \omega_2, \omega_3, d, d)$ and $(X_4X_5 - 1)^+ = X_4X_5 - 1$ otherwise.

Hence

\[E^Q((S_5 - S_3)^+|S_3) = S_3(u^2 - 1)q^2 + 2S_3(ud - 1)q(1 - q). \]

Case 2: $ud \leq 1$. Then $X_4X_5 - 1 > 0$ only on $(\omega_0, \omega_1, \omega_2, \omega_3, u, u)$. Hence

\[E^Q((S_5 - S_3)^+|S_3) = S_3(u^2 - 1)q^2. \]

2. (Extra credit - 3 pts) Show that the conditional expectation $E(X|F^S_k)$ is the best guess of X given $S_0, S_1, S_2, ..., S_k$ in the following sense

\[E[(X - E(X|F^S_k))^2] \leq E[(X - g(S_0, S_1, S_2, ..., S_k))^2], \text{ for all } g. \]

Answer: First, similar to Hmwk 2 Problem 1, we have

\[E[E(X|F^S_k)X] = E[E(X|F^S_k)^2]. \]
Reason:

\[E \left[E(X \mid \mathcal{F}_k^S) X \right] = E \left[E \left(E(X \mid \mathcal{F}_k^S) X \mid \mathcal{F}_k^S \right) \right] \]

\[= E \left[E(X \mid \mathcal{F}_k^S) E \left(X \mid \mathcal{F}_k^S \right) \right] (\text{Since } E(X \mid \mathcal{F}_k^S) \text{ is a function of } S_0, S_1, \ldots, S_k) \]

\[= E \left[E(X \mid \mathcal{F}_k^S)^2 \right]. \]

Use this result and follow exactly the same line as part b of Hmwk 2 Problem 1, we have

The LHS of the inequality is equal to

\[E \left[(X - E(X \mid \mathcal{F}_k^S))^2 \right] = E \left[X^2 - 2XE(X \mid \mathcal{F}_k^S) + E(X \mid \mathcal{F}_k^S)^2 \right] \]

\[= E(X^2) - 2E \left[E(X \mid \mathcal{F}_k^S)^2 \right] + E \left[E(X \mid \mathcal{F}_k^S)^2 \right] \text{ (by part a)} \]

\[= E(X^2) - E \left[E(X \mid \mathcal{F}_k^S)^2 \right]. \]

The RHS of the inequality is equal to

\[E \left[(X - g(S_0, S_1, \ldots, S_k))^2 \right] = E \left[X^2 - 2Xg(S_0, S_1, \ldots, S_k) + g(S_0, S_1, \ldots, S_k)^2 \right] \]

\[+ E \left[g(S_0, S_1, \ldots, S_k)^2 \right] \]

Thus we only need to show

\[E \left[E(X \mid \mathcal{F}_k^S)^2 \right] - 2E \left[E(X \mid \mathcal{F}_k^S)g(S_0, S_1, \ldots, S_k) \right] + E \left[g(S_0, S_1, \ldots, S_k)^2 \right] \geq 0, \]

but this is obvious.

3. Show that in the binomial model, we always have

\[E^Q(e^{-r(j-i)}S_j \mid S_i) = S_i. \]

Answer:

\[E^Q(e^{-r(j-i)}S_j \mid S_i) = E^Q(e^{-r(j-i)}S_iX_{i+1}X_{i+2} \ldots X_j \mid S_i) \]

\[= S_iE^Q(e^{-r}X_{i+1}e^{-r}X_{i+2} \ldots e^{-r}X_k) \]

\[= S_i \left[E^Q(e^{-r}X_1)^k \right]. \]

Thus we only need to show \(E^Q(e^{-r}X_1) = 1 \). But it is obvious since

\[e^{-r}(uq + d(1 - q)) = e^{-r} \left(u \frac{e^r - d}{u - d} + d \frac{u - e^r}{u - d} \right) = 1. \]
4. Consider the binomial model with \(n = 10 \) and a forward contract on \(S \) entered at some time \(k, 0 \leq k \leq 9 \), strike price \(K \) and expiration time \(n = 10 \).
 a) In your own words, explain what \(F(6, 10) \) means.
 It is the forward price for a forward contract entered at time \(k = 6 \).
 b) Find \(F(6, 10) \) using the replicating portfolio approach.
 It is \(S_6 e^{4r} \).
 c) Compute \(E^Q(e^{-4r}(S_{10} - K)|S_6) \).
 It is \(S_6 - e^{-4r}K \).
 d) Find \(K \) such that \(E^Q(e^{-4r}(S_{10} - K)|S_6) = 0 \). Compare your answer with the answer in part b.
 \(K = S_6 e^{4r} \).
 e) Let \(V \) be the value of a forward contract entered at time 0, with strike price \(F(0, 10) \) (so that \(V_0 = 0 \)). Compute \(V_6 \).
 By the arguments we did in class before, \(V_6 = S_6 - e^{-4r}F(0, 10) \).
 f) Compute \(E^Q(e^{-4r}(S_{10} - F(0, 10))|S_6) \) (Remember \(F(0, 10) \) is a known constant). Compare your answer with the answer in part e.
 \[
 E^Q(e^{-4r}(S_{10} - F(0, 10))|S_6) = S_6 - e^{-4r}F(0, 10).
 \]
 g) Compute \(E^Q(e^{-6r}V_6) \). (You should get 0 for the answer here. This is an instance of the rule \(E((E(X|Y)) = E(X) \).
 \[
 E^Q(e^{-6r}V_6) = E^Q(e^{-6r}(S_6 - e^{-4r}F(0, 10)))
 = E^Q(e^{-6r}S_6 - e^{-10r}F(0, 10)).
 \]
 Note that \(E^Q(e^{-6r}S_6) = S_0 \), by property of risk neutral measure, while \(E^Q(e^{-10r}F(0, 10)) = S_0 \), as well by definition of \(F(0, 10) \).

5. The Put-Call parity principle says: Holding a long position on a European Call Option and a short position on a European Put Option is the same as holding a long position on a Forward Contract (on the same stock \(S \), with the same expiration date \(n \) and strike price \(K \)). Suppose \(S \) follows the multi-period Binomial model.
 a) Express the Put-Call parity principle in terms of \(V^\text{put}, V^\text{call} \) and \(V^\text{forward} \).
b) Prove the Put-Call parity principle.

Answer:

a)
\[V_k^{\text{call}} - V_k^{\text{put}} = V_k^{\text{forward}}, \text{ for all } 0 \leq k \leq n. \]

b) By the risk neutral pricing formula:

\[V_k^{\text{call}} = \mathbb{E}^Q((S_n - K)^+|S_k); \]
\[V_k^{\text{put}} = \mathbb{E}^Q((S_n - K)^-|S_k); \]
\[V_k^{\text{forward}} = \mathbb{E}^Q(S_n - K|S_k). \]

But it's easy to check that \((S_n - K)^+ - (S_n - K)^- = S_n - K\). Indeed

\[\max(x, 0) - \max(-x, 0) = x \]

since if \(x \geq 0\) then \(\max(x, 0) = x\) and if \(x < 0\) then \(\max(-x, 0) = -x\). Using linearity of conditional expectation, the result follows.