
MATHEMATICS 503 FALL 2014
Instructor: H. J. Sussmann

Exercises for the seventh and eighth weeks of classes,
i.e., for the lectures of October 14, 16, 21 and 23.

You should practice by trying to do as many problems as you can from Chap-
ter III of the book.

PROBLEM 1. Book, Page 118, Problem 1. (NOTE: what the book calls “path”
is the same as what I called “arc” in class. And a “closed path” is what I called a
“loop.”)

PROBLEM 2. Book, Page 119, Problems 2 and 3.

PROBLEM 3. If U is an open subset of C, and a, b are real numbers such that
a < b, we use C0([a, b], U) to denote the set of all continuous functions γ : [a, b] 7→ U .
Also, if p, q are any two points of U , we use C0

p,q([a, b], U) to denote the set of all
γ ∈ C0([a, b], U) such that γ(a) = p and γ(b) = q. Finally, we use C0

loop([a, b], U) to
denote the set of all γ ∈ C0([a, b], U) such that γ(a) = γ(b). Prove that

(i) homotopy in U is an equivalence relation on C0([a, b], U),
(ii) fixed-endpoint homotopy in U is an equivalence relation on C0

p,q([a, b], U),
(iii) loop-homotopy in U is an equivalence relation on C0

loop([a, b], U).

PROBLEM 4. Prove that if U is an open connected subset of C, a, b ∈ R, and
a < b, then any two arcs γ, δ ∈ C0([a, b], U) are homotopic. (NOTE: This proves
that “homotopy”, as opposed to fixed-endpoint homotopy and loop-homotopy, is a
very stupid, useless condition.)

PROBLEM 5. An open subset U of C is simply connected if any two loops γ1, γ2 ∈
C0
loop([0, 1], U) are loop-homotopic in U . Prove that if U is simply connected then

U is holomorphically simply connected, in the sense of Problem 7 of the previous
homework assignment. (It will be proved later, maybe in this course, or in Math
504, that the converse is true. But this depends on the Riemann Mapping Theorem,
which is a much harder result than all the stuff we have been doing so far.)

PROBLEM 6. If γ : [0, 1] 7→ U is a loop, then we can define a map γ̂ : S1 7→ U by
letting γ̂(e2πit) = γ(t) for 0 ≤ t ≤ 1. (Here D̄ is the closed disc {z ∈ C : |z| ≤ 1},
and S1 is the unit circle {z ∈ C : |z| = 1}.) Prove that if γ ∈ C0

loop([0, 1], U) then

(i) the corresponding map γ̂ : S1 7→ U is continuous,
(ii) γ is loop-homotopic in U to a point if and only if the map γ̂ : S1 7→ U can

be extended to a continuous map Γ : D̄ 7→ U .

PROBLEM 7. Let f be the map from S
1 to C\{0} given by f(z) = z for z ∈ S1.

(i) Prove, using the Cauchy Integral Theorem and the result of Problem 6,
that f cannot be extended to a continuous map F : D̄ 7→ C\{0}. (NOTE:
An extension of f to a map F : D̄ 7→ C obviously exists, since it suffices
to define F by F (z) = z for z ∈ D̄. So the key point here is that we are
asking for a map F into C\{0}, i.e., a map F that never takes the value
0.)
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(ii) Deduce from (i) the no retraction theorem in dimension 2, that is, the
statement that there does not exist a continuous map G : D̄ 7→ S

1 such
that G(z) = z for z ∈ S1.

PROBLEM 8. The 2-dimensional Brouwer fixed point theorem says that every
continuous map from D̄ to D̄ has a fixed point. (That is, if f : D̄ 7→ D̄ is continuous,
then (∃z ∈ D̄)f(z) = z.) Deduce the 2-dimensional Brouwer fixed point theorem
from the no retraction theorem in dimension 2. (Hint: suppose f : D̄ 7→ D̄ has no
fixed points. Define F (z), for z ∈ D̄, to be the point in S1 obtained by moving
along the straight line from f(z) to z until you hit S1. Write an explicit formula
for F , use the formula to show that F is continuous, and observe that F is a map
whose non-existence was proved in Problem 7. Observe also that the key fact that
makes it possible to construct F is the fact that f has no fixed points, since the
definition of F (z) doesn’t make sense if f(z) = z.)

REMARK: The previous series of problems provides a proof of the 2-dimensional
Brouwer fixed-point theorem based on the fact that

∫
∂D̄

dz
z = 2πi, together with the

fact that if you deform a loop continuously without going through 0, the integral of
dz
z along that loop doesn’t change. This suggests a possible strategy for proving the
n-dimensional Brouwer fixed-point theorem: find an object ω that can be integrated
along closed hypersurfaces (that is, compact n−1-dimensional submanifolds of Rn),
and is such that

∫
σ
ω doesn’t change if you deform σ continuosuly, and

∫
∂D̄n

ω 6= 0.
(Here D̄n is the closed n-dimensional unit ball {x ∈ Rn : ‖x‖ ≤ 1}, and ∂D̄n is
the boundary of D̄n, i.e., the unit sphere Sn−1 = {x ∈ Rn : ‖x‖ = 1}. Naturally,
‖x‖ is the Euclidean norm of x, given by ‖x‖ =

√∑n
j=1 x

2
j .) It turns out that the

strategy works, as long as ω is a properly chosen differential form of order n− 1.


