
MATHEMATICS 503 FALL 2014
Instructor: H. J. Sussmann

Exercises for the fourth week of classes,
i.e., for the lectures of September 23 and 25.

You should practice by trying to do all the problems in Chapter 2 of the book
and starting to work on the problems of Chapter 3.

PROBLEM 1. Construct a function f : R 7→ R such that

(1) f is of class C∞,

and

(2) the set of zeros of f (that is, the set Z(f) = {x ∈ R : f(x) = 0}) consists
of a point x∞ ∈ R together with the points of a sequence {xn}∞n=1 such
that limn→∞ xn = x∞ and xn 6= x∞ for every n ∈ N. (Here N is the set
of natural numbers, i.e., the set of positive integers.)

Recall that the concept of “function of class C∞” (of one or several real variables,
with domain an open subset U of Rn, and with values in Rm) is defined as follows:
first one defines inductively the classes Ck(U,Rm), for k ∈ N ∪ {0}, by letting
C0(U,Rm) be the class of all continuous functions from U to Rm and then, if
k ∈ N ∪ {0} and we have already defined the class Ck(U,Rm), we let Ck+1(U,Rm)
be the class of all functions f : U 7→ R

m such that all the partial derivatives
fj(x)def= ∂f

∂xj
(x) exist for every x ∈ U and the fj belong to Ck(U,Rm). Then we

define the class C∞(U,Rm) by declaring a function f : U 7→ R
m to belong to

C∞(U,Rm) if it is in Ck(U,Rm) for every k ∈ N. (REMARK:What is this real-
variables problem doing in a Math 503 homework? ANSWER: this is part of a
series of examples, some of which have already been discussed in class, showing how
“everywhere differentiability”, and even “being of class C∞”, for real functions, is
completely different from analyticity, even though, for complex functions, “having
a complex derivative everywhere” is equivalent to real analyticity.)

PROBLEM 2. Show that, if I1, I2 are two disjoint compact intervals of the real
line, and f1 : I1 7→ R, f2 : I2 7→ R are functions of class C∞ on I1, I2. then there
exists a function f : R 7→ R which is of class C∞ and is such that f ≡ f1 on I1 and
f ≡ f2 on I2. (The precise definition of “function of class C∞ on a closed subset C
of R” is as follows: f is a function of class C∞ on C if there exist an open subset
U of R and a function g : U 7→ R of class C∞ such that C ⊆ U and f(x) = g(x)
for all x ∈ C.)

PROBLEM 3. As you know from your Calculus courses, the Mean Value Theorem
says that

(MVT) If a, b ∈ R, a < b, and f : [a, b] 7→ R is a function such that the limit
f ′(x) = lim∆x→0

f(x+∆x)−f(x)
∆x exists for every x ∈]a, b[. then there exists

an x ∈]a, b[ such that

f ′(x) =
f(b)− f(a)

b− a
.

Consider the following analogue of (MVT) for complex-valued functions
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(CMVT) If a, b ∈ R, a < b, and f : [a, b] 7→ C is a function such that the limit
f ′(x) = lim∆x→0

f(x+∆x)−f(x)
∆x exists for every x ∈]a, b[, then there exists

an x ∈]a, b[ such that

f ′(x) =
f(b)− f(a)

b− a
.

Prove that (CMVT)] is false.

PROBLEM 4. Prove that, if U is an open connected subset of the complex plane
C, and f : U 7→ C is a holomorphic function such that f ′(z) = 0 for all z ∈ U , then
f is a constant. (You are allowed–and advised—to use the Mean Value Theorem,
but be careful not to use (CMVT)!!) Make sure your proof makes it very clear
where the connectedness of U is used.

PROBLEM 5. An open subset U of C is path-connected if
(PC) whenever z1, z2 are points of U , there exists a continuous map γ : [0, 1] 7→

U such that γ(0) = z1 and γ(1) = z2.
Prove that if U ⊆ C and U is open, then U is connected if and only if it is path
connected.

PROBLEM 6. Prove that, if {Uα}α∈A is a family of open subsets of C such that
each Uα is connected and

⋂
α∈A Uα 6= ∅, then the union

⋃
α∈A Uα is connected.

PROBLEM 7. The exponential function C 3 z 7→ ez ∈ C is defined by the
following power series formula:

(1) ez =
∞∑
n=0

zn

n!
.

(Recall that 0! = 1.)
The series of the right-hand side of (1) has an infinite radius of convergence, and
this implies that the series converges everywhere, the “exponential function”—i.e.,
the function z 7→ ez—is continuous and, even more strongly, it is holomorphic and
its derivative is equal to the exponential function itself. (Most of these facts were
proved in class, or are proved in the book, or follow easily from things we have
proved in class or are proved in the book. I am not asking you to prove them here,
but you should know how to prove them, because who knows what questions may
appear an exam?) Prove the identity

ez1ez2 = ez1+z2 for all z1, z2 ∈ C .
using power series multiplication, as follows: let EN (z) be the partial sum of the
series of (1), for n from 0 to N . Prove that EN (z1)EN (z2) − EN (z1 + z2) goes to
zero as N → ∞, by (a) multiplying out the sums EN (z1), EN (z2), so as to get a
double sum, (b) writing out EN (z1 + z2) and expanding all the powers of z1 + z2

using the Binomial Theorem, so as to get another double sum, (c) observing that
the two double sums are of exactly the same terms, but over different sets of indices,
and (d) subtracting the two double sums and getting a bound for the difference.

PROBLEM 7. Prove that, if U is an open connected subset of C, f : U 7→ C is
a continuous function, and g1, g2 are two branches of ln f on U , then there exists
an integer k such that g1(z) = g2(z) + 2kπi for all z ∈ U . (Recall that a branch of
ln f on U is a continuous function g : U 7→ C such that eg(z) = f(z) for all z ∈ U .)
Make sure your proof makes it very clear where the connectedness of U is used.


