MATHEMATICS 503 FALL 2014

Instructor: H. J. Sussmann

Exercises for the second week of classes,

 i.e., for the lectures of September 9 and 11.You should practice by trying to do all the problems in Chapter 2 of the book.
PROBLEM 1. Prove that, if $L: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ is an \mathbb{R}-linear map, and we identify \mathbb{R}^{2} with \mathbb{C} in the usual way, then L has a unique decomposition $L=L_{1}+L_{2}$, where L_{1} is complex-linear and L_{2} is conjugate-complex-linear. (NOTE: A map $L: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ is complex linear if, using the identification of \mathbb{R}^{2} with \mathbb{C}, L satisfies $L(\lambda \cdot h)=\lambda L(h)$ whenever $h \in \mathbb{C}, \lambda \in \mathbb{C}$. We call L complex conjugate-linear if $L(\lambda \cdot h)=\bar{\lambda} L(h)$ whenever $h \in \mathbb{C}, \lambda \in \mathbb{C}$. It's easy to show that an \mathbb{R}-linear map L is complex-linear if and only if L is multiplication by a complex number-that is, there exists $\alpha \in \mathbb{C}$ such that $L(h)=\alpha \cdot h$ for all $h \in \mathbb{C}$ - and L is complex conjugate-linear if and only if L is conjugation followed by multiplication by a complex number - that is, there exists $\alpha \in \mathbb{C}$ such that $L(h)=\alpha \cdot \bar{h}$ for all $h \in \mathbb{C}$.)
PROBLEM 2. Problem 10 of last week's assignment.
PROBLEM 3. Book, page 46, Problems 3 and 4.
PROBLEM 4. Book, Page 58, Problem 3.
PROBLEM 5. Give a rigorous proof that the series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots
$$

converges to $\ln 2$. (NOTE: This is the series $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} z^{n}}{n}$ evaluated for $z=1$. The sum is well known to converge to $\ln z$ for $|z|<1$, but the point $z=1$ is on the boundary of the disc of convergence of the series, so it is not obvious that the series converges to $\ln 2$ for $z=1$. HINT: Write

$$
\ln (1+x)=\int_{0}^{x} \frac{d u}{1+u}
$$

expand $\frac{1}{1+u}$ as a geometric series, and justify the integration term by term, for $x=1$. Notice that the series of the integrands does not converge uniformly for $0 \leq u \leq 1$, so you need something else to justify the integration term by term.)
PROBLEM 6. Give a rigorous proof that the series

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots
$$

converges to $\frac{\pi}{4}$. (NOTE: This is the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{2 n+1}$ evaluated for $z=1$. The sum is well known to converge to $\arctan z$ for $|z|<1$, but the point $z=1$ is on the boundary of the disc of convergence of the series, so it is not obvious that the series converges to $\arctan 1$, i.e., to $\frac{\pi}{4}$, for $z=1$. HINT: Write

$$
\arctan (x)=\int_{0}^{x} \frac{1}{1+u^{2}} d u
$$

expand $\frac{1}{1+u^{2}}$ as a geometric series, and justify the integration term by term, for $x=1$. Notice that the series of the integrands does not converge uniformly for $0 \leq u \leq 1$, so you need something else to justify the integration term by term.)

